TÌM TÍCH A=\(\frac{3}{4}.\frac{8}{9}\frac{15}{16}...\frac{899}{900}\)
KHÔNG CHÉP Ở NGOÀI,GIẢI THÍCH KĨ
AI NHANH MÌNH TCK!!!!!!!
Tìm tích A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{899}{900}\)
A=3/4.8/9 .15/16.....899/900
A=1.3/2^2 . 2.4 /3^2 . 3.5/4^2 ....... 29.31 / 30^2
A= 1.2.3.....29 / 2.3.4....30 . 3.4.5...31 / 2.3.4....30
A=1/30 . 31/2
A= 31/60
Nhớ k nha
Tính tích:A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{899}{900}\)\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.........\frac{899}{900}\)
A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.........\frac{899}{900}\)
A=\(\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}..........\frac{29.31}{30.30}\)
A=\(\frac{1.2.3.......29}{2.3.4.......30}.\frac{3.4.5........31}{2.3.4.......30}\)
A=\(\frac{1}{30}.\frac{2}{31}=\frac{1}{465}\)
Tính tích \(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{899}{900}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.......\frac{899}{900}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}......\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4......30}.\frac{3.4.5......31}{2.3.4......30}\)
\(=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
chứng tỏ rằng 1/5 + 1/6 + 1/7 + .....+ 1/17 < 2
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{99}{100}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}......\frac{9.11}{10.10}\)
\(=\frac{\left(1.2.3...9\right).\left(3.4.5...11\right)}{\left(2.3.4...10\right).\left(2.3.4...10\right)}\)
\(=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}\)
cho A=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)
chứng minh A không phải là số nguyên
ai giúp mk tick cho
A =\(\frac{2^2-1}{2^2}\)+ \(\frac{3^2-1}{3^2}\)+ \(\frac{4^2-1}{4^2}\)+,,,+
= 1 - \(\frac{1}{2^2}\)+ 1 - \(\frac{1}{3^2}\)+ ...+ 1 - \(\frac{1}{30^2}\)
= ( 1+ 1+1 +... + 1 ) - ( \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ ... +\(\frac{1}{30^2}\))
= 29 - ( \(\frac{1}{2^2}\)+ \(\frac{1}{3^2}\)+ ... +\(\frac{1}{30^2}\))
Vậy A không là số nguyên
Rút gọn: A= \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}......\frac{899}{900}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{899}{900}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{29.31}{30.30}\)
\(=\frac{1.2.3....29}{2.3.4....30}.\frac{3.4.5....31}{2.3.4....30}\)
\(=\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
\(A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot...\cdot\frac{29\cdot31}{30\cdot30}\)
\(A=\frac{1\cdot2\cdot...\cdot29}{2\cdot3\cdot...\cdot30}\cdot\frac{3\cdot4\cdot...\cdot31}{2\cdot3\cdot...\cdot30}=\frac{1}{30}\cdot\frac{31}{2}=\frac{31}{60}\)
Ta có : \(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{899}{900}\)
\(A=\frac{3.8.15.....899}{4.9.16.....900}\)
\(A=\frac{\left(1.3\right).\left(2.4\right).\left(3.5\right).....\left(29.31\right)}{2^2.3^2.4^2.....30^2}\)
\(A=\frac{\left(1.2.3.....29\right).\left(3.4.5.....31\right)}{\left(2.3.4.....30\right).\left(2.3.4.....30\right)}\)
\(A=\frac{1.31}{30.2}\)
\(A=\frac{31}{60}\)
cho A=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}.\)
chung minh A<29
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)
\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)
\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)
\(A=29-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\right)\)
đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)
Ta thấy \(\frac{1}{2^2}< \frac{1}{1.2}\); \(\frac{1}{3^2}< \frac{1}{2.3}\); \(\frac{1}{4^2}< \frac{1}{3.4}\); ... ; \(\frac{1}{30^2}< \frac{1}{29.30}\)
\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)
\(=1-\frac{1}{30}< 1\)
\(\Rightarrow B< 1\)
\(\Rightarrow A=29-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\right)< 29\)
Rút gọn biểu thức \(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{899}{900}\) ta được A=
Ta có: A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.\frac{24}{25}....\frac{899}{900}\)
\(\Leftrightarrow A=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}....\frac{29.31}{30^2}\)
\(\Leftrightarrow A=\frac{1.2.3.4...29}{2.3.4.5...30}.\frac{3.4.5.6...31}{2.3.4.5...30}\)
\(\Leftrightarrow A=\frac{1}{30}.\frac{31}{2}\)
\(\Leftrightarrow A=\frac{1.31}{30.2}\)
\(\Leftrightarrow A=\frac{31}{60}\)
tính tích A =\(\frac{3}{4}\) . \(\frac{8}{9}\) .\(\frac{15}{16}\) ...........\(\frac{899}{900}\)
A=1.3/22x2.4/32x....x29.31/302
A=1.3.2.4.3.5......29.31/22.32.....302
A=(1.2.3.....29).(3.4.5.... 31)/(2.3....30)(2.3.4....30)
A=1.31/30.2
A=31/60
Rút gọn biểu thức \(A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot\frac{24}{25}\cdot...\cdot\frac{899}{900}\)
\(A=\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times\frac{24}{25}\times...\times\frac{899}{900}\)
\(=\frac{1.3}{2.2}\times\frac{2.4}{3.3}\times\frac{3.5}{4.4}\times...\times\frac{29.31}{30.30}\)
\(=\frac{\left(1\times2\times3\times...\times29\right)\left(3\times4\times5\times...\times31\right)}{\left(2\times3\times4\times...\times30\right)\left(2\times3\times4\times...\times30\right)}\)
\(=\frac{1\times2\times3\times...\times29}{2\times3\times4\times...\times30}.\frac{3\times4\times5\times...\times31}{2\times3\times4\times...\times30}\)
\(=\frac{1}{30}.\frac{31}{2}\)
\(=\frac{31}{60}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}....\frac{899}{900}\\ =\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{29.31}{30.30}\\ =\frac{1.2.3.4....29}{2.3.4...30}.\frac{3.4.5...31}{2.3.4...30}\\ =\frac{1}{30}.\frac{31}{2}=\frac{31}{60}\)
.