tìm GTLN và GTNN của tích \(xy\) biết \(x+y=2009\)
Tìm GTNN và GTLN của tích xy với x, y là các số nguyên dương và x+y=2009
Không mất tính tổng quát, giả sử x > y (do tổng x + y = 2009 là một số lẻ)\(\Rightarrow\)x \(\ge\)y+1 \(\Rightarrow\)x - y - 1 \(\ge\)0.
Từ đó, ta có: (x +1)(y -1) = xy - (x - y -1) \(\le\)xy.
Đến đây ta hiểu rằng, khi x và y càng xa nhau thì tích xy càng bé.
như vậy, GTLN của xy = 1005.1004; GTNN của xy = 2008.1
Tìm GTLN và GTNN : A = x^2 + y^2 biết x, y thoả mãn x^2 + y^2 - xy = 4 .
Cho 2 số thực x, y thỏa mãn \(x^2+y^2+xy=3\). Tìm GTLN và GTNN của \(S=x^4+xy+y^4\)
Cho hai số thực dương x,y thõa mãn : x^4+y^4+1/xy=xy + 2
Tìm GTLN VÀ GTNN của P=xy
Tìm GTLN và GTNN của A = \(x+y+z+xy+yz+xz\) biết x^2 + y^2 + z^2 = 3
+) Tìm GTNN
Đặt t = x + y + z
=> t2 = (x + y+ z)2 = x2 + y2 + z2 + 2(xy + yz + zx) = 3 + 2(xy + yz+ zx) => xy + yz + zx = (t2 - 3)/2
Khi đó, A = t + \(\frac{t^2-3}{2}\) = \(\frac{t^2+2t-3}{2}=\frac{\left(t+1\right)^2-4}{2}\ge\frac{0-4}{2}=-2\)
=> Min A = -2
Dấu "=" xảy ra khi t = - 1 <=> x + y + z = - 1. kết hợp x2 + y2 + z2 = 3 chọn x = 1;y = -1; z = -1
Vậy....
tìm GTLN nè:
ab+bc+ca\(\le\)(a+b+c)^2/3
mặt khác :
(a+b+c)^2\(\le\)3(a^2+b^2+c^2)=9
=> A=<3+3=6 khi a=b=c=1
Cho tổng A=(x+y+z)-(t+h) trong đó x,y,z,t,h là các số nguyên khác nhau từ 1 đến 2009.Tìm GTLN và GTNN của A
tìm gtln và gtnn của A=x2+y2 .biết rằng x,y thỏa mãn x2+y2-xy=4
Tìm GTLN và GTNN của biểu thức \(A=x^2+y^2\)
Biết x và y là các số thực thỏa mãn : \(x^2+y^2+xy=4\)
Tìm min :
Ta có : \(x^2+y^2-xy=4\)
\(\Leftrightarrow x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\) ( vì \(\left(x-y\right)^2\ge0\) )
\(\Leftrightarrow\frac{A}{2}\le4\)
\(\Leftrightarrow A\le8\)
Tìm max
\(x^2+y^2-xy=4\)
\(\Leftrightarrow x^2+y^2=4+xy\)
\(\Leftrightarrow3\left(x^2+y^2\right)=8+\left(x+y\right)^2\ge8\)
\(\Leftrightarrow A\ge\frac{8}{3}\)
Há miệng ra và nói: ''PHỞ SÁNG"