tìm các số nguyên x, y biết \(\frac{5}{x}\)- \(\frac{y}{3}\) = \(\frac{1}{6}\) ( x khác 0)
Tìm các số nguyên x, y biết: \(\frac{x+1}{2}\)- \(\frac{3}{5}\)= \(\frac{1}{2y}\)( với y khác 0 )
\(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)
\(\Rightarrow\frac{5x+5}{10}-\frac{6}{10}=\frac{1}{2y}\)
\(\Rightarrow\frac{5x-1}{10}=\frac{1}{2y}\)
\(\Leftrightarrow\left(5x-1\right)2y=10\)
Lập bảng xong xét các trường hợp là ra
Ta có : \(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)
=> \(\frac{x+1}{2}-\frac{1}{2y}=\frac{3}{5}\)
=> \(\frac{xy+y-1}{2y}=\frac{3}{5}\)
=> 5(xy + y - 1) = 6y
=> 5xy + 5y - 5 = 6y
=> 5xy + 5y - 6y = 5
=> 5xy - y = 5
=> y(5x - 1) = 5
Vì x ; y là số nguyên
=> Ta có 5 = 1.5 = (-1).(-5)
Lập bảng xét các trường hợp
y | 1 | 5 | -1 | -5 |
5x - 1 | 5 | 1 | -5 | -1 |
x | 1,2(loại) | 0,4(loại) | -0,8(loại) | 0(tm) |
Vậy y = - 5 ; x = 0
cho biểu thức B = \(\frac{1}{3}+\left(\frac{1}{3}\right)^2+.....+\left(\frac{1}{3}\right)^{2013}\)
tìm các số nguyên a để 3a+5 chia hết a+3
tìm số nguyên x :
\(\frac{x+5}{100}+\frac{x+5}{99}=\frac{x+5}{98}+\frac{x+5}{97}\)
tìm 2 số x; y biết chúng khác 0 mà tổng, hiệu, tích của chúng tỉ lệ với 6;1;35
Tìm các số tự nhiên x;y khác 0
biết \(\frac{4}{x}+\frac{y}{3}=\frac{5}{6}\)
\(\frac{4}{x}+\frac{y}{3}=\frac{5}{6}\)
\(\Leftrightarrow\frac{24}{6x}+\frac{xy}{6x}=\frac{5x}{6x}\)
\(\Rightarrow24+xy=5x\)
\(\Rightarrow5x-xy=24\)
\(x.\left(5-y\right)=24\)
Lập bảng thống kê là ra.
Tìm các số nguyên X ,Y biết: \(\frac{2}{x}+\frac{y}{4}+\frac{1}{8}\) ( X khác 0)
2/x + y/4 = 1/8
=> 2/x = 1/8 - y/4
=> 2/x = 1-2y/8
=> x(1 - 2y) = 16
x | -1 | 1 | -2 | 2 | -4 | 4 | -16 | 16 | 8 | -8 |
1-2y | -16 | 16 | -8 | 8 | -4 | 4 | -1 | 1 | 2 | -2 |
y | loại | loại | loại | loại | loại | loại | 1 | 0 | loại | loại |
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
tìm số các cặp số nguyên x, y biết: \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
Cho x, y là các số khác 0. Biết x+\(\frac{1}{y}\) và y+\(\frac{1}{x}\)là các số nguyên, chứng tỏ rằng A=x3y3 + \(\frac{1}{x^3+y^3}\)cũng là số nguyên
TÌm x ; y và z là các số tự nhiên khác 0 biết :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{5}\)
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405