tìm x,y thuộc N : 5x+323=y2
Tìm x,y biết:5^x+323=y^2(x;y thuộc N)
tìm x;y thuộc N biết 5^x+323=2^y
4^x+624=25^y
10^x+168=y^2
2^x+124=5^y
tìm x,y thuộc N* sao cho x3+y3+4(x2+y2)+4(x+y)=16xy
Tìm x;y thuộc N; biết rằng 10x + 288 = y2.
Lời giải:
Ta thấy:
$10x\equiv 0\pmod 5$
$288\equiv 3\pmod 5$
$\Rightarrow y^2\equiv 3\pmod 5$ (vô lý)
Do ta biết rằng một số chính phương khi chia cho $5$ chỉ có thể có dư là $0,1,4$.
Như vậy, không tồn tại số tự nhiên $x,y$ thỏa mãn điều kiện đề bài.
Tìm x;y thuộc N; biết rằng 10x + 288 = y2.
tìm x, y thuộc N biết x^2 - 5x+ 7= 3^y
tìm x,y thuộc N sao cho:xy -5x+y =17
Ta có: xy - 5x + y = 17
=> x(y - 5) + (y - 5) = 12
=> (x + 1)(y - 5) = 12
=> x + 1; y - 5 \(\in\)Ư(12) = {1; 2; 3; 4; 6; 12}
Lập bảng :
x + 1 | 1 | 2 | 3 | 4 | 6 | 12 |
y - 5 | 12 | 6 | 4 | 3 | 2 | 1 |
x | 0 | 1 | 2 | 3 | 5 | 11 |
y | 17 | 11 | 9 | 8 | 7 | 6 |
Vậy ...
Tìm x,y thuộc N biết 24 + 2xy = 5x.
\(\Leftrightarrow x\left(5-2y\right)=24\Leftrightarrow x=\dfrac{24}{5-2y}\)(1)
Để x nguyên \(\Rightarrow24⋮5-2y\Rightarrow\left(5-2y\right)=\left\{-24;-12;-8;-6;-4;-3-2;-1;1;2;3;4;6;8;12;24\right\}\)
Tìm y tương ứng thay vào (1) để tìm x
Tìm x,y thuộc N biết:
5x + 1 = y(y+1)