Cho f(x) = (x+2)(x+3)(x+4)(x+5) + 1. CMR f(x) luôn có giá trị chính phương với mọi x nguyên
Cho f(x) = (x+1)(x+2)(x+3)(x+4)(x+5) + 1. CMR f(x) luôn có giá trị chính phương với mọi x nguyên
Bạn ơi hình như đề cho thừa thì phải
Vì nếu bạn thay x=2 thì f(x) ko cp
Sửa lại đề rùi nói cho mk , mk làm cho nha
cmr a(a+1)(a+2)(a+4)(a+5)(a+6)+36 là số chính phương với mọi a nguyên
Cho đa thức f(x) = x4 + 6x3 +11x2 + 6x
a. Phân tích đa thức thành nhân tử
b. Chứng minh với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương
f(x) = x4 + 6x3 +11x2 + 6x
\(=x^4+x^3+5x^3+5x^2+6x^2+6x\)
\(=\left(x^4+x^3\right)+\left(5x^3+5x^2\right)+\left(6x^2+6x\right)\)
\(=x^3\left(x+1\right)+5x^2\left(x+1\right)+6x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+5x^2+6x\right)\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left[x^2+2x+3x+6\right]\)
\(=x\left(x+1\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]\)
\(=x\left(x+1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b)Ta có
\(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right).\left(x^2 +3x+2\right)+1\)
\(=\left(x^2+3x+1-1\right).\left(x^2+3x+1+1\right)+1\)
\(=\left[\left(x^2+3x+1\right)-1\right].\left[\left(x^2+3x+1\right)+1\right]+1\)
\(=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)
Vậy với mọi x nguyên thì f(x) + 1 luôn có giá trị là 1 số chính phương
1.Cho f(x) = ax^2 + bx + c. Biết f(0); f(1); f(2) đều là các số nguyên. CMR : f(x) luôn nhận giá trị nguyên với mọi x nguyên.
f(x)=ax2+bx+cf(x)=ax2+bx+c
f(0)=a.02+b.0+c=cf(0)=a.02+b.0+c=c
⇒⇒ c là số nguyên
f(1)=a.12+b.1+c=a+b+cf(1)=a.12+b.1+c=a+b+c
Vì c là số nguyên nên a + b là số nguyên (1)
f(2)=a.22+b.2+c=2(2a+b)+cf(2)=a.22+b.2+c=2(2a+b)+c
Vì c là số nguyên nên 2(2a + b) là số nguyên
⇒⇒ 2a + b là số nguyên (2)
Từ (1) và (2) ⇒⇒ (2a + b) - (a + b) là số nguyên ⇒⇒ a là số nguyên
⇒⇒ b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên.
#ks+Kbn= Add
#Uyên_Ami_BTS >,<
#Taehyung_stan
Ta có f(0) = a.02 + b.0+c =c
=> c là số nguyên
f(1) = a.12+ b.1+c=a +b + c = (a+)b+c
Vi c là số nguyên nên a+b là số nguyên (1)
f(2) = a.22+ b.2+c=2(2a+b)+c
=> 2(2a+b) là số nguyên
=>2a +b là số nguyên (2)
Từ (1) và (2)
=>(2a +b)-(à+b) là số nguyên => a là số nguyên =>b là số nguyên
=>f(x) luôn nhận giá trị nguyên với mọi x nguyên.
Cho đa thức f(x) bậc 5 có các hệ số nguyên. Biết có 4 giá trị nguyên của x để f(x)=1945.
CMR với mọi giá trị của x thì f(x) khác 1995.
Cho đa thức f(x) bậc 5 có các hệ số nguyên. Biết có 4 giá trị nguyên của x để f(x)=1945.
CMR với mọi giá trị của x thì f(x) khác 1995.
Cho đa thức f(x) bậc 5 có các hệ số nguyên. Biết có 4 giá trị nguyên của x để f(x) =1945.
CMR: với mọi giá trị của x thì f(x) khác 1995.
a) Cho đa thức f(x) với hệ số nguyên biết f(x) có giá trị bằng 2017 tại 5 giá trị nguyên khác nhau của x. CMR: f(x) không thể nhận giá trị 2007 với mọi số nguyên x.
b) Tìm số nguyên tố p sao cho 2p+1 là lập phương của một số tự nhiên
Cho f(x)=ax^2+bx+c. Biết f(0), f(1), f(2) đều là các số nguyên. CMR f(x) luôn nhận giá trị nguyên với mọi x nguyên
Đừng chép mạng nhé, mik đọc mạng ko hiểu:)
Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow f\left(0\right)=a0^2+0b+c\in Z\)
\(\Rightarrow c\in Z\)
\(f\left(1\right)=a1^2+1b+c=a+b+c\in Z\)
Mà \(c\in Z\Rightarrow a+b\in Z\left(1\right)\)
\(f\left(2\right)=a2^2+2b+c=4a+2b+c=2\left(2a+b\right)+c\in Z\)
Vì \(c\in Z\Rightarrow2\left(2a+b\right)\in Z\)
\(\Rightarrow2a+b\in Z\left(2\right)\)
Từ (1) và (2) suy ra: \(\left(2a+b\right)-\left(a+b\right)\in Z\)
\(\Rightarrow2a+b-a-b\in Z\)
\(\Rightarrow a\in Z\)
Từ (1) suy ra \(b\in Z\)
Vậy f(x) luôn nhận giá trị nguyên với mọi x nguyên
có gì ko hiểu thì cứ hỏi tự nhiên ạ~
\(f\left(x\right)=ax^2+bx+c\left(1\right)\)
\(\Rightarrow f\left(0\right)=c\in Z\)( vì \(f\left(0\right)\in Z\))
\(\Rightarrow f\left(1\right)=a+b+c\left(4\right)\)Mà \(f\left(1\right)\in Z\)
\(\Rightarrow a+b+c\in Z\)mà \(c\in Z\)
\(\Rightarrow a+b\in Z\Rightarrow2a+2b\in Z\left(2\right)\)
Từ (1) \(\Rightarrow f\left(2\right)=4a+2b+c\in Z\)(vì \(f\left(2\right)\in Z\))
Mà \(c\in Z\)
\(\Rightarrow4a+2b\in Z\left(3\right)\)
Từ (2) và (3)\(\Rightarrow2a\in Z\Rightarrow a\in Z\)
Từ (4) kết hợp a,c \(\in Z\Rightarrow b\in Z\)
\(\Rightarrow f\left(x\right)\)luôn nhân giá trị nguyên với mọi x nguyên
Cách lm giống bn Châu mình lơ mơ quá, chả hiểu gì, mình thấy cậu tắt quá, bài của bạn kia dễ hiểu hơn nhiều ý!
Cho đa thức f(x) bậc 5 có các hệ số nguyên. Tại 4 giá trị nguyên khác nhau của x thì f(x)=1945.
CMR: với mọi giá trị của x thì f(x) khác 1995.