Cho x, y >0 thỏa mãn: \(x^2+y^2\le x+y\). Chứng minh \(x+2y\le\frac{3}{2}+\frac{\sqrt{10}}{2}\)
Chứng minh rằng :
\(\frac{3-\sqrt{10}}{2}\le F=x+2y\le\frac{3+\sqrt{10}}{2}\) trong đó x, y là 2 số thực thỏa mãn \(x^2+y^2=x+y\)
P/s : hướng dẫn giải
\(x^2+y^2=x+y\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\frac{1}{2}\)
Tiếp tục đặt ẩn phụ \(a=x-\frac{1}{2};b=y-\frac{1}{2}\)
Lúc đó ta sẽ chuyển về tìm Min , Max của \(F=a+2b+\frac{3}{2}\)
Ta có : \(a^2+b^2=\frac{1}{2}\) . Áp dụng bất đẳng thức Bunhiacôpsky ta có :
\(\left(a+2b\right)^2=\left(1.a+2.b\right)^2\le\left(1+4\right)\left(a^2+b^2\right)=\frac{5}{2}\)
\(\Rightarrow\frac{3-\sqrt{10}}{2}\le F\le\frac{3+\sqrt{10}}{2}\)
Cho x, y > 0 thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}=2\) Chứng minh: \(\frac{\sqrt{x}}{x^2+y+2y\sqrt{x}}+\frac{\sqrt{y}}{y^2+x+2x\sqrt{y}}\le\frac{1}{2}\)
\(VT=\frac{\sqrt{x}}{x^2+y+2y\sqrt{x}}+\frac{\sqrt{y}}{y^2+x+2x\sqrt{y}}\le\frac{\sqrt{x}}{2x\sqrt{y}+2y\sqrt{x}}+\frac{\sqrt{y}}{2y\sqrt{x}+2x\sqrt{y}}\)
\(=\frac{\sqrt{x}+\sqrt{y}}{2\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{1}{2\sqrt{xy}}\)
Có \(2=\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}=\frac{2}{\sqrt{xy}}\)\(\Leftrightarrow\)\(\frac{1}{2\sqrt{xy}}\le\frac{1}{2}\)
\(\Rightarrow\)\(VT\le\frac{1}{2}\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x^2=y\\y^2=x\\\frac{1}{x}=\frac{1}{y}\end{cases}\Leftrightarrow x=y}\)
...
. Cho các số thực x,y thỏa mãn 0<x<1, 0<y<1 Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}\)
Cho x,y là các số thực không âm thỏa mãn x,y\(\le\)1
chứng minh rằng:\(\frac{x+y}{2}\le\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\le1\)
Cho x, y là các số thực thỏa mãn 0<x, y<1.
Chứng minh rằng \(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}.\)
Cho x, y, z \(>0\)và thỏa mãn: x + y + z = xyz. Chứng minh rằng: \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Từ giả thiết:\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)\(\Rightarrow ab+bc+ca=1\)
Ta có:\(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\)\(=\sqrt{\frac{1}{1+x^2}}+\sqrt{\frac{1}{1+y^2}}+\sqrt{\frac{1}{1+z^2}}\)
\(=\sqrt{\frac{\frac{1}{x}}{\frac{1}{x}+x}}+\sqrt{\frac{\frac{1}{y}}{\frac{1}{y}+y}}+\sqrt{\frac{\frac{1}{z}}{\frac{1}{z}+z}}\)\(=\sqrt{\frac{a}{a+\frac{1}{a}}}+\sqrt{\frac{b}{b+\frac{1}{b}}}+\sqrt{\frac{c}{c+\frac{1}{c}}}\)
\(=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)
Đến đây:\(\frac{a}{\sqrt{a^2+1}}=\frac{a}{\sqrt{a^2+ab+bc+ca}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(=\sqrt{\frac{a}{a+b}.\frac{a}{a+c}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
Tương tự:\(\frac{b}{\sqrt{b^2+1}}\le\frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right);\frac{c}{\sqrt{c^2+1}}\le\frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\)
Cộng 3 bất đẳng thức lại ta có điều phải chứng minh :))
sao hỏi vớ vẩn thía
cho x, y, z thỏa mãn x+ y + z = xyz chứng minh rằng: \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Ta có:\(\frac{1}{\sqrt{1+x^2}}=\frac{\sqrt{yz}}{\sqrt{yz+x^2yz}}=\frac{\sqrt{yz}}{\sqrt{yz+x\left(x+y+z\right)}}=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)
Tương tự: \(\frac{1}{\sqrt{1+y^2}}=\sqrt{\frac{zx}{\left(y+z\right)\left(y+x\right)}}\)
\(\frac{1}{\sqrt{1+z^2}}=\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow VT=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+z\right)\left(y+x\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{z+y}\right)=\frac{3}{2}\)
cho x,y là 2 số thực dương thỏa mãn \(|x-2y|\le\frac{1}{\sqrt{x}}\) và \(|y-2x|\le\frac{1}{\sqrt{y}}\). tìm gtln của P=x2+2y
Cho x,y là các số thực thỏa mãn \(0\le x\le y\le1;2xy+y\le2\)
Chứng minh rằng :\(2x^2+y^2\le\frac{3}{2}\)