cho số tự nhiên n =9999999...9 (có 2000 chữ số 9) tìm tổng các chữ số của n2
Một số tự nhiên có 2 chữ số, tổng các chữ số của nó là 9. Nếu ta thêm chữ số 0 vào giữa hai chữ số trên thì được số mới gấp 9 lần số đã cho. Tìm số tự nhiên ban đầu.
Một số tự nhiên có 2 chữ số, tổng các chữ số của nó là 9. Nếu ta thêm chữ số 0 vào giữa hai chữ số trên thì được số mới gấp 9 lần số đã cho. Tìm số tự nhiên ban đầu.
Gọi số tự nhiên cần tìm là \(\overline{ab}\)(\(a,b\inℕ\), \(a\ne0\), \(a,b\le9\))
Vì tổng các chữ số của số đó là 9 nên ta có phương trình \(a+b=9\)(1)
Ta có \(\overline{ab}=10a+b\)
Khi viết chữ số 0 vào giữa hai chữ số thì ta được số mới là \(\overline{a0b}=100a+b\)
Vì số mới gấp 9 lần số đã cho nên ta có phương trình \(100a+b=9\left(10a+b\right)\Leftrightarrow100a+b=90a+9b\Leftrightarrow10a=8b\Leftrightarrow b=\frac{5}{4}a\)(2)
Từ (1) và (2) \(\Rightarrow a+\frac{5}{4}a=9\Leftrightarrow\frac{9}{4}a=9\Leftrightarrow a=4\left(nhận\right)\)
\(\Rightarrow b=9-a=9-4=5\)(nhận)
Vậy số tự nhiên ban đầu là 45
A là số tự nhiên có 2004 chữ số. A là số chia hết cho 9 ; B là tổng các chữ số của A ; C là tổng các chữ số của B ; D là tổng các chữ số của C. Tìm D.
Vì A là số chia hết cho 9 mà B là tổng các chữ số của A nên B chia hết cho 9. Tương tự ta có C, D cũng chia hết cho 9 và đương nhiên khác 0. Vì A gồm 2004 chữ số mà mỗi chữ số không vượt quá 9 nên B không vượt quá 9x 2004 = 18036.
Do đó B có không quá 5 chữ số và C < 9 x 5 = 45. Nhưng C là số chia hết cho 9 và khác 0 nên C chỉ có thể là 9 ; 18 ; 27 ; 36. Dù trường hợp nào xảy ra thì ta cũng có D = 9.
A = 671 x 9999999...9999997 + 2015 (có 99 chữ số 9)
Tính tổng các chữ số của A.
cho số A là 1 số tự nhiên có 10000000 chữ số và chia hết cho 9. Số B bằng tổng các chữ số của A. Số C bằng tổng các chữ số của B. Số D bằng tổng các chữ số của C. Tìm D
hình như lớp 1 làm j đã hc cái này đâu ta
: A là số tự nhiên có 2004 chữ số. A là số chia hết cho 9 ; B là tổng các chữ số của A ; C là tổng các chữ số của B ; D là tổng các chữ số của C. Tìm D.
Vì a là số chia hết cho 9 mà b là tổng các chữ số của a nên b chia hết cho 9.Tương tự ta có c;d cũng chia hết cho 9 và đương nhiên khác 0.Vì a gồm 2004 chữ số mà mỗi chữ số không vượt quá 9 nên b không vượt quá: 2004x9=18036.Do đó b không quá 5 chữ số và c<9x5=45
Nhưng c là số chia hết cho 9 và khác 0 nên c có thể là: 9;18;27;36.Dù trường hợp nào xảy ra ta cũng có d chia hết cho 9
Vì A là số chia hết cho 9 mà B là tổng các chữ số của A nên B chia hết cho 9. Tương tự ta có C, D cũng chia hết cho 9 và đương nhiên khác 0. Vì A gồm 2004 chữ số mà mỗi chữ số không vượt quá 9 nên B không vượt quá 9 x 2004 = 18036. Do đó B có không quá 5 chữ số và C < 9 x 5 = 45. Nhưng C là số chia hết cho 9 và khác 0 nên C chỉ có thể là 9 ; 18 ; 27 ; 36. Dù trường hợp nào xảy ra thì ta cũng có D = 9.
Tích nha tớ tích lại
Bài giải : Vì A là số chia hết cho 9 mà B là tổng các chữ số của A nên B chia hết cho 9. Tương tự ta có C, D cũng chia hết cho 9 và đương nhiên khác 0. Vì A gồm 2004 chữ số mà mỗi chữ số không vượt quá 9 nên B không vượt quá 9 x 2004 = 18036. Do đó B có không quá 5 chữ số và C < 9 x 5 = 45. Nhưng C là số chia hết cho 9 và khác 0 nên C chỉ có thể là 9 ; 18 ; 27 ; 36. Dù trường hợp nào xảy ra thì ta cũng có D = 9.
A là số tự nhiên có 2004 chữ số. A là số chia hết cho 9 ; B là tổng các chữ số của A ; C là tổng các chữ số của B ; D là tổng các chữ số của C. Tìm D.
Vì A là số chia hết cho 9 mà B là tổng các chữ số của A nên B chia hết cho 9. Tương tự ta có C, D cũng chia hết cho 9 và đương nhiên khác 0. Vì A gồm 2004 chữ số mà mỗi chữ số không vượt quá 9 nên B không vượt quá 9 x 2004 = 18036. Do đó B có không quá 5 chữ số và C < 9 x 5 = 45. Nhưng C là số chia hết cho 9 và khác 0 nên C chỉ có thể là 9 ; 18 ; 27 ; 36. Dù trường hợp nào xảy ra thì ta cũng có D = 9.
A là số tự nhiên có 2004 chữ số. A là số chia hết cho 9 ; B là tổng các chữ số của A ; C là tổng các chữ số của B ; D là tổng các chữ số của C. Tìm D.
A là số tự nhiên có 5000 chữ số. A là số chia hết cho 9 ; B là tổng các chữ số của A ; C là tổng các chữ số của B ; D là tổng các chữ số của C. Tìm D.