Tìm giá trị nhỏ nhất của biểu thức \(A=\left|2x-2\right|+\left|2x-2013\right|\) với x là số nguyên
Tìm giá trị nhỏ nhất của biểu thức A = $\left|x-2\right|+\left|2x-2013\right|$ với x là số nguyên
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
mình nha
Tìm gtrị nhỏ nhất của biểu thức:
\(A=\left|2x+2\right|+\left|2x-2013\right|\) với x là số nguyên
không cần giải đâu nha! ^_^
1. Tìm giá trị nhỏ nhất của các biểu thức
a) C= \(x^2+3\left|y-2\right|-1\)
b)D= x+|x|
2. Tìm giá trị lớn nhất của các biểu thức.
a) A= \(5-\left|2x-1\right|\)
b)B= \(\frac{1}{\left|x-2\right|+3}\)
3. Tìm giá trị lớn nhất của biểu thức \(C=\frac{x+2}{\left|x\right|}\)với x là số nguyên.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Câu 1: Giá trị nhỏ nhất của
\(\left|x-3\right|+\left|Y+3\right|+2016\) là:...
Câu 2: Giá trị của x để biểu thức:
\(M=\left(2x-1\right)^2+\left(2y-1\right)+2013\)Đạt giá trị nhỏ nhất
Câu 3: Giá trị x>0 thỏa mãn (x-10)+(2x-6)=8
\(A=\left|x-3\right|+\left|y+3\right|+2016\)
\(\left|x-3\right|\ge0\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left|x-3\right|+\left|y+3\right|+2016\ge2016\)
Dấu ''='' xảy ra khi \(x-3=y+3=0\)
\(x=3;y=-3\)
\(MinA=2016\Leftrightarrow x=3;y=-3\)
\(\left(x-10\right)+\left(2x-6\right)=8\)
\(x-10+2x-6=8\)
\(3x=8+10+6\)
\(3x=24\)
\(x=\frac{24}{3}\)
x = 8
Tìm giá trị của x để biểu thức M=\(\left(2x+5\right)^2+2x\left(3x-4\right)-\left(x^2+22\right)\) đạt giá trị nhỏ nhất và giá trị nhỏ nhất bằng bao nhiêu?
Các bạn giúp mình với
= \(4x^2\)+\(20x\)+\(25\)+\(6x^2\)- \(8x\)- \(x^2\)-\(22\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(3\)
=\(9x^2\)+\(12x\)+\(4\)-\(1\)
=(\(3x\)+\(2\))2-\(1\)
vì (\(3x\)+\(2\))2 >-0
=>.................-\(1\)>-(-1)
(>- là > hoặc =)
=> GTNN của M= -1 khi và chỉ khi \(3x\)+\(2\)=\(0\)
..................................
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(x^2-2x\right)\left(x^2-2x+2\right)\)
Đặt x2-2x+1=t, ta có:
\(A=\left(t-1\right)\left(t+1\right)=t^2-1=\left(x^2-2x+1\right)^2-1\ge-1\)
Dấu "=" xảy ra khi \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Đặt \(\left(x^2-2x\right)\left(x^2-2x=2\right)=k.\left(k+2\right)=A\)
\(\Rightarrow A=k.\left(k+2\right)=k^2+2k\)
\(\Rightarrow A=k^2+k+k+1-1=k\left(k+1\right)+\left(k+1\right)-1\)
\(\Rightarrow A=\left(k+1\right)^2-1\)
\(\Rightarrow A=\left(x^2-2x+1\right)^2-1\)
\(\Rightarrow A=\left(x^2-x-x+1\right)^2-1=\left[x.\left(x-1\right)-\left(x-1\right)\right]^2-1\)
\(\Rightarrow A=\left(x-1\right)^2-1\ge-1\)
( Dấu "=" xảy ra <=> x=1 )
Tìm giá trị nhỏ nhất của biểu thức A=|2x-2|+|2x-2013| với x là số nguyên
Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)
Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất
TH1: |2x-2|=0 Suy ra 2x=2=>x=1
A= 0+|2.2-2013|=2009
TH2:|2x-2013|=0=>2x=2013=>x=1006,5
A=|2x-2|+|2x-2013|=|2.1006,5-2|=2011
Vì 2011>2009 suy ra MinA =2009
Vì|2x-2|và|2x-2013| lớn hơn hoặc bằng 0 với mọi x thuộc R(Ko thấy kí hiệu đâu cả)
Để A nhỏ nhất suy ra tổng 2 số hạng trên nhỏ nhất
TH1: |2x-2|=0 Suy ra 2x=2=>x=1
A= 0+|2.2-2013|=2009
TH2:|2x-2013|=0=>2x=2013=>x=1006,5
A=|2x-2|+|2x-2013|=|2.1006,5-2|=2009
MinA =2009
Áp dụng BĐT trị tuyệt đối ta có:
\(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)
\(\Rightarrow A_{min}=2011\)
Dấu "=" xảy ra khi \(\left(2x-2\right)\left(2013-2x\right)\ge0\Rightarrow1\le x\le1006\)