Giải phương trình: \(2017\sqrt{2017x-2016}+\sqrt{2018x-2017}=2018\)
\(2017\sqrt{2017x-2016}+\sqrt{2018x-2017}=2018\)
tim x , y thoa man \(y=\sqrt{\frac{2018x+2019}{2017x-2018}}+\sqrt{\frac{2018x+2019}{2018-2017x}}+2018\)
Giải phương trình \(x^2+2017x-2016=2\sqrt{2019x-2018}\)
\(DK:x\ge\frac{2018}{2019}\)
\(PT\Leftrightarrow x^2-2x+1+2019x-2018-2\sqrt{2019x-2018}+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2019x-2018}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(\sqrt{2019x-2018}-1\right)^2=0\end{cases}}\Leftrightarrow x=1\left(TM\right)\)
Ai giỏi toán giải giúp em bài này với
Không tính giá trị hãy so sánh
A = \(\sqrt{2018+\sqrt{2017}}-\sqrt{2017+\sqrt{2017}}\)
và B = \(\sqrt{2017+\sqrt{2016}}-\sqrt{2016+\sqrt{2016}}\)
giải hệ phương trình :
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2016]{x}-\sqrt[2016]{y}=\left(\sqrt[2017]{y}-\sqrt[2017]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
Mấy anh chị giải hộ phương trình này giúp em với. cảm ơn
\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\left(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024\right)=x+y+z\)
\(\Leftrightarrow2\sqrt{x-2016}+2\sqrt{y-2017}+2\sqrt{z-2018}+6048=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x-2016}+y-2\sqrt{y-2017}+z-2\sqrt{z-2018}+6048=0\)
\(\Leftrightarrow x-2016-2\sqrt{x-2016}+1+y-2017+2\sqrt{y-2017}+1+z-2018-2\sqrt{z-2018}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-2016}-1\right)^2+\left(\sqrt{y-2017}-1\right)^2+\left(\sqrt{z-2018}-1\right)^2=0\)
\(ĐK:x\ge2016;y\ge2017;z\ge2018\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}-1=0\\\sqrt{y-2017}-1=0\\\sqrt{z-2018}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2016}=1\\\sqrt{y-2017}=1\\\sqrt{z-2018}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\y=2018\\z=2019\end{cases}}}\)
nhân đôi 2 vế rồi chuyển vế trái sang vế phải, ta có:
\(\left(\sqrt{x-2016}-1\right)^2\) + \(\left(\sqrt{y-2017}-1\right)^2\)
+ \(\left(\sqrt{z-2018}-1\right)^2\)
= 0
Giải phương trình
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{\sqrt{2016-x}+2016}{\sqrt{2017-x}+2017}\)
Ai giỏi toán giup em với
Không tính giá trị hãy so sánh:
\(A=\sqrt{2018+\sqrt{2017}}-\sqrt{2017+\sqrt{2017}}\)
và \(B=\sqrt{2017+\sqrt{2016}}-\sqrt{2016+\sqrt{2016}}\)
theo em là A=B
em mới học lớp 5 thôi chưa chắc đúng đâu
2017=2017
2018 hơn 2016 là 2 đơn vị
2017 lớn hơn 2016 là 1 đơn vị
2017 lớn hơn 2016 1 đơn vị
A hơn B số đăn vị là:
2-(1+1)=0
Nên A=B
thanks em nha anh sẽ xem lại
Ai có kết quả nữa thì giúp mình nha
Nguyễn Thị lệ sai rồi. mk mới học lớp nên cx ko biết làm nhưng đây không phải so sánh số như lớp 5.
không so sánh căn bậc 2 được như thế đâu.
Ai giỏi toán giup em với
Không tính giá trị hãy so sánh
\(A=\sqrt{2018+\sqrt{2017}}-\sqrt{2017+\sqrt{2017}}\)
\(B=\sqrt{2017+\sqrt{2016}}-\sqrt{2016+\sqrt{2016}}\)