tìm số tự nhiên n để phân số \(\frac{2n+1}{n+2}\)là phân số rút gọn được
tìm số tự nhiên n để phân số \(\frac{2n+1}{n+2}\)là phân số rút gọn được
Ta có: (2n+1) chia hết cho (n+2)
=>2(n+2)-3 chia hết cho n+2
=>-3 chia hết cho n+2
=> n+2 thuộc Ư(-3)
ta có bảng sau:
n+2 | 3 | -3 | 1 | -1 |
n | 1 | -5 | -1 | -3 |
vậy n thuộc tập hợp {1; -3; -1; -5} thì n rút gọn được
mk bt làm ƯCLN của 2n+1 và n+2\(\in\)(1,3 rồi các bạn chỉ cần trình bày đoạn sau thui
Mk cx đg thắc mắc bài này.Thầy giáo cx giao bài tương tự như thế.
Tìm điều kiện của số tự nhiên n để phân số sau có thể rút gọn được: \(\frac{n+2}{2n+1}\)
tìm tất cả số tự nhiên n để phân số \(\frac{2n-1}{3n+2}\) có thể rút gọn được
tìm sô tự nhiên n để phân số \(\frac{2n+1}{n+2}\) rút gọn được
CMR :p và p2+2 là các số nguyên tố thì p3+2 là số nguyên tố
ta có:
\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\)
=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3
2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)
=> n+2 chia hết cho 3
=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.
Ta thấy
- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2
- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p
Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2
=> p^2 không chia hết cho 2 nên p không chia hết cho 2
=> p^3 không chia hết cho 2
Vậy p^3 +2 là số nguyên tố
Tìm số tự nhiên n để phân số 2n-1/3n+2 rút gọn được
làm giúp mình nha, cảm ơn
TK :
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
cho biểu thức A=(2n+1)/(n-3) + (3n-5) /(n-3) - (4n-5) / (n-3)
a)Rút gọn A
b)tìm số tự nhiên n để A nhận giá trị là số nguyên
c)tìm số nguyên n để phân số A sau khi rút gọn là phân số tối giản
a, các phân số sau có thể rút gọn cho các số tự nhiên nào [n\(\in\)N]
A=\(\frac{n+4}{n-1}\) B= \(\frac{4n-1}{2n+1}\)
b, Tìm các số nguyên n để A và B nhận giá trị nguyên
c, Tìm các số tự nhiên n trong khoảng từ 50 đến 70 để các phân số rút gọn được
d, Tìm các số tự nhiên n trong khoảng từ 100 đến 120 để các phân số tối giản
\(A=\frac{n+4}{n-1}=\frac{n-1+5}{n-1}=1+\frac{5}{n-1}\) vì 1 thuộc Z => để A thuộc Z thì 5 / n-1 thuộc Z
<=> n-1 thuộc Ư(5 )=> n-1 = 5 => n = 6
n-1 = -5 => n=-4
n-1 = 1 => n= 2
n -1 = -1 => n = 0
B làm tương tự tách 4n -1 = 4n + 2 -3 = 2. ( 2n+1 ) -3
bài 1: phân số\(\frac{n+9}{n-6}\)(n thuộc N) có thể rút gọn cho số nào?
bài 2:tìm số tự nhiên n để phân số\(\frac{18n+3}{\text{23n+7}}\)có thể rút gọn được?
1) Đặt: ( n + 9 ; n - 6 ) = d với d là số tự nhiên
=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)
=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }
=> d có thể rút gọn cho số 3; 5; 15
2) Đặt: ( 18n + 3 ; 23n + 7 ) = d
=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)
=> \(57⋮d\)
=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)
=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được khi d = 3; d = 19 ; d = 57
Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19
Nên mình chỉ cần xác định n với d = 3 và d =19
+) Với d = 3
\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)
=> \(n+11⋮3\)
=> \(n-1⋮3\)
=>Tồn tại số tự nhiên k sao cho: \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3
+) Với d = 19
\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)
=> \(n+11⋮19\Rightarrow n-8⋮19\)
=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19
Vậy n = 3k + 1 hoặc n = 19k + 8 thì phân số sẽ rút gọn được.
Tìm số tự nhiên n để phân số \(\frac{63}{3n+1}\)
a) Rút gọn được?
b) là số tự nhiên