tìm số tự nhiên n để phân số \(\frac{2n+1}{n+2}\)là phân số rút gọn được
tìm số tự nhiên n để phân số \(\frac{2n+1}{n+2}\)là phân số rút gọn được
Gọi d là ước chung nguyên tố của 2n + 1 và n + 2
Ta có : 2n + 1 và n + 2 chia hết cho d
=> 2n + 1 và 2n + 4 chia hết cho d
=>(2n + 4) - (2n + 1) chia hết cho d
=> 3 chia hết cho d => d = 3
Để p/s tối giản thì d ko bằng 3
=> 2n + 1 ko chia hết cho 3
=> 2n + 1 - 3 ko chia hết cho 3
=> 2n - 2 ko chia hết cho 3
=> 2.(n - 1) ko chia hết cho 3
=> n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)
=> n ko bằng 3k + 1(k thuộc Z)
Vậy với n ko bằng 3k + 1 thì p/s tối giản
Gọi d là ước chung nguyên tố của 2n + 1 và n + 2
Ta có : 2n + 1 và n + 2 chia hết cho d
=> 2n + 1 và 2n + 4 chia hết cho d
=>(2n + 4) - (2n + 1) chia hết cho d
=> 3 chia hết cho d => d = 3
Để p/s tối giản thì d ko bằng 3
=> 2n + 1 ko chia hết cho 3
=> 2n + 1 - 3 ko chia hết cho 3
=> 2n - 2 ko chia hết cho 3
=> 2.(n - 1) ko chia hết cho 3
=> n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)
=> n ko bằng 3k + 1(k thuộc Z)
Vậy với n ko bằng 3k + 1 thì p/s tối giản
Tìm điều kiện của số tự nhiên n để phân số sau có thể rút gọn được: \(\frac{n+2}{2n+1}\)
tìm tất cả số tự nhiên n để phân số \(\frac{2n-1}{3n+2}\) có thể rút gọn được
tìm sô tự nhiên n để phân số \(\frac{2n+1}{n+2}\) rút gọn được
CMR :p và p2+2 là các số nguyên tố thì p3+2 là số nguyên tố
ta có:
\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\)
=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3
2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)
=> n+2 chia hết cho 3
=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.
Ta thấy
- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2
- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p
Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2
=> p^2 không chia hết cho 2 nên p không chia hết cho 2
=> p^3 không chia hết cho 2
Vậy p^3 +2 là số nguyên tố
Tìm số tự nhiên n để phân số 2n-1/3n+2 rút gọn được
làm giúp mình nha, cảm ơn
TK :
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
cho biểu thức A=(2n+1)/(n-3) + (3n-5) /(n-3) - (4n-5) / (n-3)
a)Rút gọn A
b)tìm số tự nhiên n để A nhận giá trị là số nguyên
c)tìm số nguyên n để phân số A sau khi rút gọn là phân số tối giản
a, các phân số sau có thể rút gọn cho các số tự nhiên nào [n\(\in\)N]
A=\(\frac{n+4}{n-1}\) B= \(\frac{4n-1}{2n+1}\)
b, Tìm các số nguyên n để A và B nhận giá trị nguyên
c, Tìm các số tự nhiên n trong khoảng từ 50 đến 70 để các phân số rút gọn được
d, Tìm các số tự nhiên n trong khoảng từ 100 đến 120 để các phân số tối giản
\(A=\frac{n+4}{n-1}=\frac{n-1+5}{n-1}=1+\frac{5}{n-1}\) vì 1 thuộc Z => để A thuộc Z thì 5 / n-1 thuộc Z
<=> n-1 thuộc Ư(5 )=> n-1 = 5 => n = 6
n-1 = -5 => n=-4
n-1 = 1 => n= 2
n -1 = -1 => n = 0
B làm tương tự tách 4n -1 = 4n + 2 -3 = 2. ( 2n+1 ) -3
bài 1: phân số\(\frac{n+9}{n-6}\)(n thuộc N) có thể rút gọn cho số nào?
bài 2:tìm số tự nhiên n để phân số\(\frac{18n+3}{\text{23n+7}}\)có thể rút gọn được?
1) Đặt: ( n + 9 ; n - 6 ) = d với d là số tự nhiên
=> \(\hept{\begin{cases}n+9⋮d\\n-6⋮d\end{cases}}\Rightarrow\left(n+9\right)-\left(n-6\right)⋮d\Rightarrow15⋮d\)
=> d \(\in\)Ư ( 15 ) = { 1; 3; 5; 15 }
=> d có thể rút gọn cho số 3; 5; 15
2) Đặt: ( 18n + 3 ; 23n + 7 ) = d
=> \(\hept{\begin{cases}18n+3⋮d\\23n+7⋮d\end{cases}}\Rightarrow23\left(18n+3\right)-18\left(23n+7\right)⋮d\)
=> \(57⋮d\)
=> \(d\inƯ\left(57\right)=\left\{1;3;19;57\right\}\)
=> \(\frac{18n+3}{\text{23n+7}}\) rút gọn được khi d = 3; d = 19 ; d = 57
Vì rút gọn được cho 57 thì sẽ rút gọn được cho 3 và cho 19
Nên mình chỉ cần xác định n với d = 3 và d =19
+) Với d = 3
\(\hept{\begin{cases}18n+3⋮3\\23n+7⋮3\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮3\)
=> \(n+11⋮3\)
=> \(n-1⋮3\)
=>Tồn tại số tự nhiên k sao cho: \(n=3k+1\)khi đo phân số sẽ rút gọn được cho 3
+) Với d = 19
\(\hept{\begin{cases}18n+3⋮19\\23n+7⋮19\end{cases}}\Rightarrow9\left(18n+3\right)-7\left(23n+7\right)⋮19\)
=> \(n+11⋮19\Rightarrow n-8⋮19\)
=> Tồn tại số tự nhiên k sao cho n = 19k + 8 khi đó phân số sẽ rút gọn được cho 19
Vậy n = 3k + 1 hoặc n = 19k + 8 thì phân số sẽ rút gọn được.
Tìm số tự nhiên n để phân số \(\frac{63}{3n+1}\)
a) Rút gọn được?
b) là số tự nhiên