Chứng tỏ các tổng sau không phải là số tự nhiên
A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
Chứng tỏ các tổng sau không phải là số tự nhiên
a) \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
b) \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{8}\)
c) \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)
chịu lun
mk chỉ biết tính tổng ra
rồi chứng tỏ thôi
chúc bn học giỏi!
thanks@
Hãy chứng tỏ rằng tổng \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{16}\)không phải là một số tự nhiên.
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
\(\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{16}=2,380728993ma2,380728993\) ko phải số tự nhiên nên S ko phải số tự nhiên
Hãy chứng tỏ rằng tổng
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{16}\)
Không phải là số tự nhiên
Chứng tỏ rang tổng sau :
\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không phải là sô tự nhiên với n thuộc N* và n > 2
Tham khảo tại đây:
Câu hỏi của triệu minh Anh - Toán lớp 6 - Học toán với OnlineMath
chứng tỏ : B = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}\) không phải là số tự nhiên
Bài này giải giống bài mình vừa giải bạn à , tương tự giống luôn , chỉ khác mỗi đề bài nhưng lập luận vẫn giống.
B = 1/2 + ( 1/3 + 1/4 +....+ 1/8 )
> 1/2 + 6/8
= 5/4
B = 1/2 + 1/3 + 1/8 + ( 1/4 + 1/5 + 1/6 + 1/7 )
< 1/2 + 11/24 + 4/4
= 1/2 + 11/24 + 1
< 1/2 + 12/24 + 1
= 2
=> 5/4 < B < 2
=> 1 < B < 2
=> B ko phải là số tự nhiên
Tk mk nha
Cho A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}\)
a. Chứng tỏ A > 2.
b. Chứng tỏ a không phải là số tự nhiên.
vì 1/2+1/3+1/4+1/5+1/6+.....+1/11=2,0198765(3)>2 => A>2
Chứng minh tổng sau đây không phải là số tự nhiên \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{15}+\frac{1}{16}\)
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
chứng tỏ A =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{16}\) không phải là số tự nhiên
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{16}\)
\(\Leftrightarrow A=\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{16}\right)+\left(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{15}\right)\)
Đặt \(\frac{1}{2}+\frac{1}{4}+...\frac{1}{16}=B\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{3}...+\frac{1}{8}\)
\(2B-B=B=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\)
Ta có:
\(A=1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{15}\)
\(A=\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}\right).2+1+\frac{1}{9}+\frac{1}{11}+...+\frac{1}{15}\)
Tính A ra rồi chứng minh nó không phải phân số.
cho M=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}\) . Chứng tỏ rằng M không phải là số tự nhiên