Tìm n thuộc N để: A = (n - 1) ( n2 + 2n + 3) là số nguyên tố.
tìm n để A=(n-1) (n2+2n+3) là số nguyên tố
Để \(\left(n-1\right)\left(n^2+2n+3\right)\) là số nguyên tố <=> \(n-1=1\) hoặc \(n^2+2n+3=1\)
TH1 : \(n-1=1\Rightarrow n=2\)
\(\Rightarrow\left(n-1\right)\left(n^2+2n+3\right)=\left(2-1\right)\left(2^2+2.2+3\right)=11\)là số nguyên tố (TM)
TH2 : \(n^2+2n+3=1\)
\(\Leftrightarrow\left(n^2+2n+1\right)+2=1\Leftrightarrow\left(n+1\right)^2+2=1\Rightarrow\left(n+1\right)^2=-1\) (loại vì \(\left(n+1\right)^2\ge0\) )
Vậy n = 2 thì \(\left(n-1\right)\left(n^2+2n+3\right)\)là số nguyên tố
tìm n thuộc N để: (n-1).(n2+2n+3) là số nguyên tố
tìm n thuộc N để 2n - 1 và 2n +1 là số nguyên tố
1, Tìm n thuộc N để 7n+3 và 2n+4 nguyên tố chùng nhau
2, Tìm n thuộc N để 4n+3 và 2n+3 nguyên tố chùng nhau
Cho A=2n+5/n-1 (n thuộc N*, n khác 1).
Tìm n để A là số nguyên tố
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Tìm n thuộc N,để:
(n-1).(n mũ 2+2n+3)là số nguyên tố
tìm n thuộc N để n3+n2-n+2 là số nguyên tố
Tìm n thuộc N để 2n+1 , 3n+1 là các SCP còn 2n+9 là số nguyên tố