Chứng minh rằng M chia hết cho 99.
Cho A = ( 1 + 1/2 + 1/3 + ... + 1/98 ) x 2 x 3 x 4 x ... x 98
Chứng minh A chia hết cho 99
1) Tìm cặp số nguyên x,y thỏa mãn 2.(x.y- 3) =x
2)Tính nhanh A= 3/10 +3/30 + 3/60 +...+3/1900
3) Chứng minh rằng :1/5 + 1/6 +1/7 +...+ 1/17 < 2
4) Cho M = ( 1+ 1/2 +1/3 + 1/4+ ...+1/98).2.3.4....98. Chứng minh rằng M chia hết cho 99
Giusp mình với nha! Ai giải đúng mình sẽ tick ! Thank you!
1. Tìm 2 số nguyên tố x và y sao cho
x2 -2x+1=6y2-2x+2
2. a/b=1/50+1/51.....1/99 CHỨNG MINH a chia hết cho 149
3. Cho m=(1/1+1/2+1/3....+1/98)*2*3.....*98 CHỨNG MINH m chia hết cho 99
Câu 1; Chứng tỏ nếu:abcd chia hết cho 99 thì ab+cd chia hết cho 99 và ngược lại.
Câu 2: Tm x thuộc tập N để:
a.x+8 chia hết cho x
b. 60-15x chia hết cho 5x
c. 5x-8 chia hết cho x + 3
d. 6-4x chia hết cho 2-x
e. 4x+9 chia hết cho 3-x
Câu 3: Tính:
S=1 - 3 + 3^2 - 3^3 + ................+ 3^98 - 3^99
Câu 4: Cho : M = 1+3+3^2+..............+3^11
Chứng minh; M chia hết cho 52
Bài 1: Chứng minh rằng nếu tổng của 3 số nguyên liên tiếp là số lẻ thì tích của chúng chia hết cho 24.
Bài 2: Cho a, b, c, d thuộc Z; a khác (-c). Chứng minh rằng a.b + c.d + a.d + b.c chia hết cho a+c.
Bài 3: Cho x= 1- 3+ 3^2- 3^3+ ... + 3^98- 3^99.
a) Chứng minh x chia hết cho 20.
b) Tìm x.
c) Chứng tỏ 3100: 4 dư 1.
Bài 4: Cho a, b, c thuộc N thỏa mãn a^2+ b^2+ c^2= 2051. Chứng minh rằng a.b.c chia hết cho 3 nhưng không chia hết cho 12.
Cậu search mạng chứ gì
Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z)
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8.
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3.
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24.
Vậy đccm.
Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d).
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c.
Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có:
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99)
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3)
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96)
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20.
Vậy x chia hết cho 20 (đccm)
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100
=> 3x + x = 1 - 3^100
=> 4x = (1 - 3^100)
=> x = (1 - 3^100)/4
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm)
Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1.
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1.
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2.
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3
Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z)
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8.
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3.
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24.
Vậy đccm.
Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d).
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c.
Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có:
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99)
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3)
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96)
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20.
Vậy x chia hết cho 20 (đccm)
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100
=> 3x + x = 1 - 3^100
=> 4x = (1 - 3^100)
=> x = (1 - 3^100)/4
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm)
Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1.
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1.
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2.
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3
Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF
Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z
1. Tím số dư trong phép chia f(x)=x100+x99+x98+...+x2+x+1 cho x2-1
2. Cho đa thức 4x3 +ax+b chia hết cho các đa thức x-2 và x+1 . Tính 2a-3b
1. Đa thức chia có bậc là 2 nên bậc của đa thức dư không vượt quá 1
Gỉa sử \(f_{\left(x\right)}\) chia \(x^2-1\) được thương là \(g_{\left(x\right)}\) và số dư là ax+b \(\Rightarrow f_{\left(x\right)}=x^{100}+x^{99}+x^{98}+...+x^2+1=\left(x^2-1\right).g_{\left(x\right)}+\left(ax+b\right)\)
Ta có: \(f_{\left(1\right)}=1^{100}+1^{99}+...+1^2+1=\left(1^2-1\right).g_{\left(1\right)}+\left(a.1+b\right)\)
\(\Rightarrow a+b=101\) (1)
\(f_{\left(-1\right)}=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)+1=\left[\left(-1\right)^2-1\right].g_{\left(-1\right)}+\left[a\left(-1\right)+b\right]\)
\(\Rightarrow-a+b=1\) (2)
Từ (1) và (2) \(\Rightarrow a+b-a+b=102\Rightarrow2b=102\Rightarrow b=51\)
\(\Rightarrow-a+51=1\Rightarrow-a=-50\Rightarrow a=50\)
Vậy đa thức dư là 50x+51
2. Đa thức \(4x^3+ax+b\) chia hết cho các đa thức x-2 và x+1, mà x-2 và x+1 không có nhân tử chung có bậc khác 0 nên \(4x^3+ax+b⋮\left(x-2\right)\left(x+1\right)=x^2-x-2\)
Đặt \(4x^3+ax+b=\left(x^2-x-2\right)\left(4x+c\right)\)
\(=4x^3+cx^2-4x^2-cx-8x-2c\)
\(=4x^3+\left(c-4\right)x^2-\left(c+8\right)x-2c\)
\(\Rightarrow\left\{{}\begin{matrix}c-4=0\\c+8=-a\\-2c=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c=4\\a=-12\\b=-8\end{matrix}\right.\Rightarrow2a-3b=2.\left(-12\right)-3.\left(-8\right)=0\)
Vậy 2a-3b=0
Bài 1: cho f(x) là đa thức với hệ số hữu tỉ. chứng minh rằng:
a, nếu f(x3) chia hết cho x-1 thì f(x3) chia hết cho x2 + x+1
b. chứng minh tổng quát nếu f(xn) chia hết cho x-1 thì f(xn) chia hết cho xn-1 + xn-2 +...+ x+1
Bài 2 chứng minh rằng xn -1 chia hết cho xm-1 khi và chỉ khi n chia hết cho m
3) Cho S = 1 - 3 + 32 - 33 + ..... + 398 - 399
a) Tính tổng S => 3100 chia hết cho 4 dư 1
b) Chứng minh S chia hết cho (-20)
c) Tìm số dư khi chia S cho 9
4) Với giá trị nào của x,y thì biểu thức:
A = giá trị tuyệt đối của x - y + ( x - 3)2 + 1 có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
5) Cho A = 4 - 42 + 43 - 44 + .... + 499 - 4100
a) Tìm tổng A
b) Chứng minh A chia hết cho (-12) ; A không chia hết cho 16
c) Tìm chữ số tận cùng của 5A