Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vu tien dat
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
Đen đủi mất cái nik
17 tháng 1 2019 lúc 19:51

\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=4-2y\\\left(2x-y^2\right)^2=2y-4\end{cases}}\Rightarrow\left(x-2\right)^2=-\left(2x-y^2\right)^2=0\Rightarrow x-2=2x-y^2=0\Rightarrow\hept{\begin{cases}x=2,y=2\\x=2,y=-2\end{cases}}\)

Đen đủi mất cái nik
17 tháng 1 2019 lúc 19:55

b,

\(\hept{\begin{cases}x^3-y^3=9\left(x+y\right)\\x^2-y^2=3\end{cases}\Rightarrow}x^3-y^3=3.\left(x^2-y^2\right)\left(x+y\right)\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\left(x^2+2xy+y^2\right)=0\)\(\Rightarrow\left(x-y\right)\left(x^2+xy+y^2-3x^2-6xy-3y^2\right)=0\Rightarrow\left(x-y\right)\left(2x^2+5xy+2y^2\right)=0\)

Tự xử đoạn còn lại nhé

Thuy Duong Nguyen
Xem chi tiết
misu
Xem chi tiết
Lê Hải
Xem chi tiết
Incursion_03
31 tháng 10 2018 lúc 22:54

Ôi trời nhiều thía ? làm từng câu một ha !

\(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)

Incursion_03
31 tháng 10 2018 lúc 23:02

b, ĐKXĐ \(x\ne\pm y\)

Đặt \(\frac{1}{x+y}=a\)  và  \(\frac{1}{x-y}=b\)(a và b khác 0)

Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)

          \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)

   \(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)

Incursion_03
31 tháng 10 2018 lúc 23:06

c,\(\hept{\begin{cases}4x^2+y^2=13\\2x^2-y^2=-7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x^2+y^2+2x^2-y^2=13-7\\2x^2-y^2=-7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}6x^2=6\\2x^2-y^2=-7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm1\\y=\pm3\end{cases}}\)

Nguyễn Ngọc Tho
Xem chi tiết
lakabasi
Xem chi tiết
Thanh Tùng DZ
1 tháng 5 2020 lúc 21:28

đề có sai không vậy. 

Khách vãng lai đã xóa
Thiên An
Xem chi tiết
alibaba nguyễn
12 tháng 2 2017 lúc 8:55

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

alibaba nguyễn
12 tháng 2 2017 lúc 9:01

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

alibaba nguyễn
12 tháng 2 2017 lúc 9:15

c/ \(\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\\sqrt{3x+1}+\sqrt{3y+1}=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+2y-\sqrt{xy}=3\\3x+3y+2+2\sqrt{9xy+3x+3y+1}=16\end{cases}}\)

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\)thì ta có

\(\hept{\begin{cases}2a-\sqrt{b}=3\\3a+2\sqrt{9b+3a+1}=14\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=4a^2-12a+9\\3a+2\sqrt{36a^2-105a+82}=14\end{cases}}\)

Tiếp tục chuyển vế pt dưới rồi bình phương 2 vế tìm được a có a suy ra b từ đây tìm được x, y

Phan Tiến Nhật
Xem chi tiết
Phùng Ngọc Quyết
9 tháng 5 2020 lúc 17:45

222-111=

Khách vãng lai đã xóa
Thanh Tùng DZ
9 tháng 5 2020 lúc 17:48

HPT \(\Leftrightarrow\hept{\begin{cases}y-x=2\\\frac{x+y}{xy}=\frac{4}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=y-2\\\frac{2y-2}{\left(y-2\right)y}=\frac{4}{3}\left(1\right)\end{cases}}}\)

Từ ( 1 ) suy ra \(3\left(2y-2\right)=4y\left(y-2\right)\)

\(\Rightarrow4y^2-14y+6=0\Rightarrow\orbr{\begin{cases}y=3\\y=\frac{1}{2}\end{cases}}\)

+) y = 3 suy ra x = 1

+) y = \(\frac{1}{2}\)suy ra x = \(\frac{-3}{2}\)

Khách vãng lai đã xóa
Kiyotaka Ayanokoji
9 tháng 5 2020 lúc 17:50

\(\hept{\begin{cases}\frac{y}{2}-\frac{x}{2}=1\\\frac{1}{x}+\frac{1}{y}=\frac{4}{3}\end{cases}\left(x,y>0\right)\Leftrightarrow\hept{\begin{cases}y-x=2\\\frac{y+x}{xy}=\frac{4}{3}\end{cases}}}\)

                                   \(\Leftrightarrow\hept{\begin{cases}-x+y=2\\3.\left(x+y\right)=4.xy\end{cases}}\)

                                  \(\Leftrightarrow\hept{\begin{cases}-3x+3y=6\\3x+3y=4xy\end{cases}}\)

                                  \(\Leftrightarrow\hept{\begin{cases}-x+y=2\\6y=6+4xy\end{cases}}\)

                                  \(\Leftrightarrow\hept{\begin{cases}x=y-2\\6y=6+4.\left(y-2\right).y\end{cases}}\)

                                  \(\Leftrightarrow\hept{\begin{cases}x=y-2\\6y=6+4y^2-8y\end{cases}}\)

                                  \(\Leftrightarrow\hept{\begin{cases}x=y-2\\4y^2-14y+6=0\end{cases}}\)

                                  \(\Leftrightarrow\hept{\begin{cases}x=y-2\\\left(y-3\right).\left(4y-2\right)=0\end{cases}}\)

                                  \(\Leftrightarrow\hept{\begin{cases}x=y-2\\y=3;y=\frac{1}{2}\end{cases}}\)

                                   \(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right);x=\frac{-3}{4}\left(L\right)\\y=3\left(TM\right);y=\frac{1}{2}\left(L\right)\end{cases}}\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(1;3\right)\)

                            

Khách vãng lai đã xóa