Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảo Châu Trần
Xem chi tiết
Hoàng Phúc
30 tháng 3 2016 lúc 20:25

\(E=\left(1\frac{1}{2}xy^2\right).\left(1\frac{1}{3}x^2y^3\right).\left(1\frac{1}{4}x^3y^4\right).....\left(1\frac{1}{2014}x^{2013}y^{2014}\right)\)

\(E=\left(\frac{3}{2}xy^2\right).\left(\frac{4}{3}x^2y^3\right).\left(\frac{5}{4}x^3y^4\right).....\left(\frac{2015}{2014}x^{2013}y^{2014}\right)\)

\(E=\left(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{2015}{2014}\right).\left(x.x^2.x^3......x^{2013}\right).\left(y^2y^3.y^4......y^{2014}\right)\)

\(E=\left(\frac{3.4.5......2015}{2.3.4......2014}\right).\left(x^{1+2+3+....+2013}\right).\left(y^{2+3+4+....+2014}\right)\)

\(E=\frac{2015}{2}.x^{2027091}.y^{2029104}\)

Đến đây tự kết luận nhé(hệ số;phần biến;đơn thức)

Trần Khánh Linh
Xem chi tiết
Trần Linh Nga
Xem chi tiết
ngonhuminh
13 tháng 5 2018 lúc 10:49

a)<=>

A,=(x+y)(x-y)=x^2-y^2

x=(-1/2)^5:(1/2)^4=-1/2

x^2=1/4

y=8^2/(-2)^5=-2

y^2=4

A=1/4-4=-15/4

quân phùng
17 tháng 5 2018 lúc 21:38
https://i.imgur.com/ZAuiaWv.jpg
Truong Minh Tuan
Xem chi tiết
Cao Thị Thùy Dung
Xem chi tiết
Bla bla bla
Xem chi tiết
Trần Tuấn Hoàng
14 tháng 12 2023 lúc 19:24

Điều kiện: \(x\ge2012;y\ge2013;z\ge2014\)

Áp dụng bất đẳng thức Cauchy, ta có:

\(\left\{{}\begin{matrix}\dfrac{\sqrt{x-2012}-1}{x-2012}=\dfrac{\sqrt{4\left(x-2012\right)}-2}{2\left(x-2012\right)}\le\dfrac{\dfrac{4+x-2012}{2}-2}{2\left(x-2012\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{y-2013}-1}{y-2013}=\dfrac{\sqrt{4\left(y-2013\right)}-2}{2\left(y-2013\right)}\le\dfrac{\dfrac{4+y-2013}{2}-2}{2\left(y-2013\right)}=\dfrac{1}{4}\\\dfrac{\sqrt{z-2014}-1}{z-2014}=\dfrac{\sqrt{4\left(z-2014\right)}-2}{2\left(z-2014\right)}\le\dfrac{\dfrac{4+z-2014}{2}-2}{2\left(z-2014\right)}=\dfrac{1}{4}\end{matrix}\right.\)

Cộng vế theo vế, ta được:

\(\dfrac{\sqrt{x-2012}-1}{x-2012}+\dfrac{\sqrt{y-2013}-1}{y-2013}+\dfrac{\sqrt{z-2014}-1}{z-2014}\le\dfrac{3}{4}\)

Đẳng thức xảy ra khi \(x=2016;y=2017;z=2018\)

Vậy....

Ánh Dương
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 6 2020 lúc 17:06

c/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)

Vậy pt đã cho vô nghiệm

Nguyễn Việt Lâm
13 tháng 6 2020 lúc 16:27

a/ ĐKXĐ: \(\left\{{}\begin{matrix}x>2013\\y>2014\\z>2015\end{matrix}\right.\)

\(\Leftrightarrow\frac{1}{4}-\frac{\sqrt{x-2013}-1}{x-2013}+\frac{1}{4}-\frac{\sqrt{y-2014}-1}{y-2014}+\frac{1}{4}-\frac{\sqrt{z-2015}-1}{z-2015}=0\)

\(\Leftrightarrow\frac{x-2013-4\sqrt{x-2013}+4}{4\left(x-2013\right)}+\frac{y-2014-4\sqrt{y-2014}+4}{4\left(y-2014\right)}+\frac{z-2015-4\sqrt{z-2015}+4}{4\left(z-2015\right)}=0\)

\(\Leftrightarrow\left(\frac{\sqrt{x-2013}-2}{2\sqrt{x-2013}}\right)^2+\left(\frac{\sqrt{y-2014}-2}{2\sqrt{y-2014}}\right)^2+\left(\frac{\sqrt{z-2015}-2}{2\sqrt{z-2015}}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2013}-2=0\\\sqrt{y-2014}-2=0\\\sqrt{z-2015}-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)

Nguyễn Việt Lâm
13 tháng 6 2020 lúc 16:30

b/ Trừ vế cho vế 2 pt ta được:

\(x^3-y^3=2\left(y-x\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-xy\right)+2\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-xy+2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2\right]=0\)

\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)

Thay vào pt đầu:

\(x^3+1=2x\Leftrightarrow x^3-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow...\)

Hann Hann
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết