Chung to rang: 1/201+1/202+...+1/399+1/400>1/2
chung to rang: 1/201+1/202+...+1/399+1/400 > 1/2
\(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}>\frac{1}{400}.200=\frac{200}{400}=\frac{1}{2}\)
=> điều phải chứng minh.
Đinh Tuấn Việt thì lúc nào cũng giỏi rồi
chung to 1/201+1/202+......+1/399+1/400>1/2
1/201+1/202+...+1/400>1/400x200=200/400=1/2
Chứng tỏ rằng: 1/201+1/202+....+1/399+1/400 >1/2
Chứng tỏ;
1/201+1/202+...........+1/399+1/400 >1/2
Ta thấy:
\(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
............................
\(\frac{1}{399}>\frac{1}{400}\)
\(\frac{1}{400}=\frac{1}{400}\)
Cộng theo vế ta được:
\(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+....+\frac{1}{400}=\frac{200}{400}=\frac{1}{2}\)
\(\frac{1}{201}+\frac{1}{202}+...+\frac{1}{400}>\frac{1}{400}.200=\frac{1}{2}\)
Vậy
\(\frac{1}{201}+\frac{1}{202}+......+\frac{1}{399}+\frac{1}{400}>\frac{1}{2}\)
\(\Rightarrow\left(400-201\right):+1=200\)
\(\Rightarrow\frac{1}{400}.200=\frac{200}{400}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}< \frac{1}{201}+......+\frac{1}{400}\)
chứng tỏ:1/201+1/202+...........+1/399+1/400>1
Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)
Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm
Các PS 1/201, 1/202,..1/399 đều lớn hơn
\(CMR:\frac{1}{201}+\frac{1}{202}+....+\frac{1}{399}+\frac{1}{400}>\frac{1}{2}\)
Đặt \(S=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{399}+\frac{1}{400}\)
Ta thấy :
\(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
...
\(\frac{1}{399}>\frac{1}{400}\)
\(\Rightarrow S>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)
có 200 dãy \(\Rightarrow S>\frac{200}{400}=\frac{1}{2}\)
Vậy : \(S>\frac{1}{2}\)
Chứng minh rằng:
1/201+ 1/202+...+ 1/399+ 1/400>1/2
1<1/5+ 1/6+...+1/16+ 1/17<2
Các phân số 1/201; 1/202;....;1/399 đều lớn hơn 1/400 nên 1/201+1/202+...+1/399+1/400>1/400 . 200 = 1/2
Chứng tỏ rằng:
\(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{2}\)
Vì \(\frac{1}{201}>\frac{1}{400}\)
\(\frac{1}{202}>\frac{1}{400}\)
\(\frac{1}{203}>\frac{1}{400}\)
.................
\(\frac{1}{399}>\frac{1}{400}\)
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(199 số hạng \(\frac{1}{400}\))
⇒ \(\frac{1}{201}+\frac{1}{202}+\frac{1}{203}+...+\frac{1}{399}+\frac{1}{400}>\frac{1}{400}+\frac{1}{400}+\frac{1}{400}+...+\frac{1}{400}\)(200 số hạng \(\frac{1}{400}\)) = 200.\(\frac{1}{400}\)=\(\frac{1}{2}\)
⇒ A > \(\frac{1}{2}\)
Vậy A > \(\frac{1}{2}\) (ĐPCM)
P=1/2.3/4.5/6.....399/400.Chung to rang P nho hon1/20
Đặt Q =\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{400}{401}\)
Dễ thấy: P < Q
Mặt khác:
P.Q = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}....\frac{399}{400}.\frac{400}{401}=\frac{1.2.3....399.400}{2.3.4...400.401}\)
=\(\frac{1}{401}< \frac{1}{400}=\left(\frac{1}{20}\right)^2\)
Mà \(P^2< P.Q< \left(\frac{1}{20}\right)^2\Leftrightarrow P< \frac{1}{20}\)