Cho 2 điểm P,Q năm trong \(\Delta\)ABC thỏa mãn \(\widehat{PAB}=\widehat{QAC}\)và \(\widehat{PBA}=\widehat{QBC}\). Chứng minh rằng:
\(\frac{PA.QA}{AB.AC}+\frac{PB.QB}{BA.BC}+\frac{PC.QC}{CA.CB}=1\).
Cho \(\Delta ABC\) và \(\Delta MNP\) có \(\widehat{A}=\widehat{M}\) . Chứng minh rằng: \(\frac{S_{MNP}}{S_{ABC}}=\frac{MN.MP}{AB.AC}\)
Kẻ \(BH⊥AC;NK⊥MP\)
Khi đó ta thấy ngay \(\Delta MNK\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{NK}{BH}=\frac{MN}{AB}\)
Lại có \(\frac{S_{MNP}}{S_{ABC}}=\frac{\frac{1}{2}.MP.NK}{\frac{1}{2}.AC.BH}=\frac{NK}{BH}.\frac{MP}{AC}=\frac{MN}{AB}.\frac{MP}{AC}=\frac{MN.MP}{AB.AC}\left(đpcm\right)\)
Cho hình thoi ABCD. Hai điểm P,Q nằm trong hình thoi thoả mãn \(\widehat{PAQ}=\widehat{PCQ}=\frac{1}{2}\widehat{DAB}\) và P nằm trong tam giác ABC. Chứng minh rằng BP//DQ.
Giúp mình với! Mình cần gấp trong chiều mai!
https://olm.vn/hoi-dap/detail/228905523575.html
Cho hình thoi ABCD. Hai điểm P,Q nằm trong hình thoi thoả mãn \(\widehat{PAQ}=\widehat{PCQ}=\frac{1}{2}\widehat{DAB}\) và P nằm trong tam giác ABC. Chứng minh rằng BP//DQ.
Giúp mình với! Mình cần gấp trong chiều mai!
Ta cần hai bổ đề:
Bổ đề 1: (Hình bên phải) Xét tứ giác MNPQ nội tiếp (QN). Trên MQ và NP lấy S,T sao cho ^MNS = ^PQT. Khi đó MP chia đôi ST.
Thật vậy: Gọi NS,QT cắt (QN) tại điểm thứ hai lần lượt là K,L. KL cắt MP tại I
Áp dụng ĐL Pascal cho bộ 6 điểm Q,K,M,N,L,P ta được 3 điểm S,I,T thẳng hàng
Ta có ^MNK và ^PQL là hai góc nội tiếp, ^MNK = ^PQL nên (MK = (PL
Từ đó dựng \(\Delta\)PRL vào phía trong đường tròn sao cho \(\Delta\)PRL = \(\Delta\)KSM
Vì tứ giác MKPL là hình thang cân nên IS = IR (Tính đối xứng)
Ta thấy ^IPT = ^MKS (Cùng chắn cung MN) = ^LPR. Tương tự ^PLT = ^ILR
Suy ra T và R là hai điểm Đẳng giác trong \(\Delta\)PIL => ^RIP = ^TIL
Ta lại có ^PTL = ^KSM = ^PRL ( = 900 + ^MNK = 900 + ^PQL) => Tứ giác TRPL nội tiếp
Từ đó có biến đổi góc: ^IRT = 3600 - ^IRP - ^PRT = ^RIP + ^RPI + ^TLP = ^TIL + ^TRL + ^ILR = ^ITL
=> \(\Delta\)TIR cân tại I => IT = IR = IS. Tức là MP đi qua trung điểm I của ST.
Bổ đề 2: (Hình bên trái) Xét 2 góc ^ACB và ^ADB cùng nhìn đoạn AB dưới một góc không đổi (C và D nằm khác phía so với AB). Kẻ AE,BF vuông góc với BC,AD. Khi đó EF chia đôi CD.
Chứng minh: Gọi H,K lần lượt là trực tâm của \(\Delta\)ABC và \(\Delta\)ABD. Do ^ACB và ^ADB cùng nhìn AB dưới một góc không đổi nên tâm ngoại tiếp của \(\Delta\)ABC và \(\Delta\)ADB đối xứng nhau qua AB. Theo một kết quả quen thuộc thì CH = DK.
Suy ra tứ giác CHDK là hình bình hành, trung điểm của HK và CD trùng nhau (1)
Chú ý tứ giác AEBF nội tiếp (AB), ^EBH = ^FAK. Áp dụng Bổ đề 1 ta được EF chia đôi HK (2)
Từ (1) và (2) suy ra EF cũng chia đôi CD.
Giải bài toán:
Gọi O là tâm của hình thoi ABCD. Từ P,Q lần lượt kẻ PM,QN vuông góc với CQ,AP.
Ta thấy ^PAQ và ^PCQ cùng nhìn đoạn PQ dưới một góc không đổi bằng 1/2.^DAB
Đồng thời có PM vuông góc CQ, QN vuông góc AP. Áp dụng Bổ đề 2 ta thu được MN chia đôi AC
Hay MN đi qua O. Mặt khác ta có: \(\Delta\)CMP ~ \(\Delta\)COB (g.g) => \(\Delta\)CMO ~ \(\Delta\)CPB (c.g.c)
Suy ra ^CBP = ^COM = ^AON (Vì lúc này ^AON và ^COM đối đỉnh). Tương tự ^AON = ^ADQ
Từ đó ^CBP = ^ADQ. Kết hợp với BC // AD suy ra BP // DQ (đpcm).
còn cách khác không? Mình đang học chuyên đề hình thoi
Cách 2 đơn giản, dễ hiểu hơn:
Gọi M,N lần lượt là điểm đối xứng của P,Q qua các đường thẳng CQ,AP.
Ta thấy ^QAN = 2.^PAQ = ^DAB => ^QAD = ^NAB. Kết hợp với AQ = AN, AD = AB
=> \(\Delta\)AQD = \(\Delta\)ANB (c.g.c) => DQ = BN. Tương tự ta có DM = BP
Chú ý rằng MQ = PQ = PN (Tính đối xứng). Từ đó \(\Delta\)NBP = \(\Delta\)QDM (c.c.c)
Do vậy ^MBP = ^QDM => ^ABP + ^ADQ = ^CDQ + ^CBP (Vì ^ABN = ^ADQ, ^CDM = ^CBP)
Mà ^ABP + ^CBP = ^ADQ + ^CDQ nên ^ADQ - ^CBP = ^CBP - ^ADQ hay ^ADQ = ^CBP
Vì ^ADQ = ^CBP (cmt); AD // BC nên BP // DQ (đpcm).
Cho tam giác ABC vuông tại A. Dựng điểm D trên cạnh AC sao cho \(\widehat{DBC}=\frac{1}{3}\widehat{ABC}\). Gọi X là hình chiếu vuông góc của C trên đường thẳng BD. Trên tia BA lấy điểm Y sao cho BX = BY. Chứng minh rằng
a) \(\frac{1}{BY^2}+\frac{1}{CX^2}=\frac{4}{XY^2}\)
b) \(\widehat{XAC}=\widehat{DBC}\)từ đó suy ra AX = XY
c) \(cos\widehat{ABC}=4cos^2\frac{\widehat{ABC}}{3}-3cos\frac{\widehat{ABC}}{3}\)
Cho tam giác ABC thỏa mãn
\(BC^2=AB+\frac{AC}{2}\)
Lấy điểm P trên Ab sao cho tỉ lệ 3 : 1 .
Chứng minh rằng \(\widehat{PAC}=2\widehat{CPA}\)
Cho \(\Delta ABC\)vuông cân tại A. Giả sử trong tam giác có điểm M thỏa mãn \(\widehat{MBA}=\widehat{MAC}=\widehat{MCB}\). Chứng minh MB=2.MA
Cho \(\Delta ABC\)vuông cân tại A. Giả sử trong tam giác có điểm M thỏa mãn \(\widehat{MBA}=\widehat{MAC}=\widehat{MCB}\). Chứng minh MB=2.MA
Cho tam giác ABC có phân giác AD và đường cao AH. Vẽ \(DI⊥AB\) tại I.
Chứng minh rằng: \(\frac{DI}{AH}=\frac{BC}{AB+AC}\)Trên AD lấy điểm M, N sao cho \(\widehat{MBA}=\widehat{NBD}\). Chứng minh rằng: \(\frac{MA}{MD}\cdot\frac{NA}{ND}=\left(\frac{AB}{BD}\right)^2\)Chứng minh rằng: \(\widehat{MCA}=\widehat{NCD}\)
Cho tam giác ABC , O là điểm nằm trong tam giác.
a. Chứng minh rằng : \(\widehat{BOC}\)= \(\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b. Biết \(\widehat{ABO}+\widehat{ACO}=90-\frac{\widehat{A}}{2}\)và tia BO là tia phân giác của góc B. Chứng minh rằng : Tia CO là tia phân giác của góc C.
a) Ta có: + \(\widehat{BOC}\)là góc ngoài của tam giác OBK
=> \(\widehat{BOC}=\widehat{OBK}+\widehat{OKB}\) (1)
+ \(\widehat{OKB}\)là góc ngoài của tam giác AKC
=>\(\widehat{OKB}=\widehat{A}+\widehat{ACK}\)(2)
Từ (1)(2) =>\(\widehat{BOC}=\widehat{OBK}+\widehat{A}+\widehat{ACK}\)
hay\(\widehat{BOC}=\widehat{A}+\widehat{ABO}+\widehat{ACO}\)
b) Ta có:\(\widehat{ABO}+\widehat{ACO}=90^o-\frac{\widehat{A}}{2}\)
=>\(2\widehat{ABO}+2\widehat{ACO}=180^o-\widehat{A}\)(3)
Xét tam giác ABC có:
\(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^o\)( Tổng 3 góc trong 1 tam giác)
=>\(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}\)(4)
Từ (3)(4) => \(2\widehat{ABO}+2\widehat{ACO}=\widehat{ABC}+\widehat{ACB}\)(*)
Ta có: BO là tia phân giác của góc ACB
=>\(2\widehat{ABO}=\widehat{ABC}\)(**)
Từ (*)(**) => \(2\widehat{ABO}+2\widehat{ACO}=2\widehat{ABO}+\widehat{ACB}\)
=>\(2\widehat{ACO}=\widehat{ACB}\)
=> CO là tia phân giác của góc ACB