Những câu hỏi liên quan
Trần Lâm Thiên Hương
Xem chi tiết
Pain Thiên Đạo
25 tháng 5 2018 lúc 21:43

\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)

\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)

\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)

\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)

\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)

t chỉ làm dc đến đây thôi :))

Trần Lâm Thiên Hương
27 tháng 5 2018 lúc 11:02

Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:

\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)

Tương tự : \(y^2z+y^2z+z^2x\ge3yz\);   \(z^2x+z^2x+x^2y\ge3zx\)

Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)

\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

Dấu '=' xảy ra khi x = y = z = 1

Tran Le Khanh Linh
21 tháng 4 2020 lúc 19:43

Do xyz=1. nên bđt cần chứng minh tường đương với

\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{3}{2}\)

Theo BĐT Bunhiacopsky ta có:

\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\)

Do vậy ta cần cm

\(\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\ge\frac{3}{2}\)

\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+4\left(x^2y^2+y^2z^2+z^2x^2\right)\ge3\left(x^3z+y^3x+z^3y\right)+3\left(xy+yz+xz\right)\)

BĐT trên là tổng của 3 BĐT sau:

\(1,x^2y^2+y^2z^2+z^2x^2\ge xy+yz+xz\)

\(2,x^4+y^4+z^4\ge x^3z+y^3x+z^3y\)

\(3,x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2\ge2\left(x^3z+y^3x+z^3y\right)\)

ta có bđt trên tương đương với

\(x^2\left(x-z\right)^2+y^2\left(y-x\right)^2+z^2\left(z-y\right)^2\ge0\)

Nhân 3 ở bđt đầu tiên rồi cộng vế theo vế các bđt ở dưới ta có đpcm

dấu "=" xảy ra khi x=y=z=1

Khách vãng lai đã xóa
 .
Xem chi tiết
PhungHuyHoang
28 tháng 8 2019 lúc 17:30

\(x=\frac{4}{1+4}=\frac{4}{5}=0,8\)   \(z=\frac{4}{1+4}=\frac{4}{5}=0,8\)

\(y=\frac{4}{1+4}=\frac{4}{5}=0,8\)

Lê Tài Bảo Châu
28 tháng 8 2019 lúc 17:31

PhungHuyHoang

Làm sai mà rút ra được kiểu đấy

Nguyễn Thiều Công Thành
Xem chi tiết
Tuyển Trần Thị
4 tháng 11 2017 lúc 13:06

vì x+y+z=1nên

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)

nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)

\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)

dau = xay ra khi x=y=z=1/3

Minh Tâm
Xem chi tiết
doraemon
Xem chi tiết
alibaba nguyễn
28 tháng 12 2021 lúc 19:57

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le\left(x+y+z\right)\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{9}{4}\)

\(\Leftrightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}\le\frac{y+z}{4x}+\frac{z+x}{4y}+\frac{x+y}{4z}\)

Ta có:

\(VP=\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)

\(\ge\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=VT\)

Khách vãng lai đã xóa
doraemon
Xem chi tiết
vũ thị ánh dương
Xem chi tiết
Hoàng Minh Hiếu
22 tháng 1 2019 lúc 23:38

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{yz+zx+xy}{xyz}=0\) (Quy đồng)

\(\Rightarrow yz+zx+xy=0\)

Vì:

\(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)

\(2\left(x^4y^{ }^4+y^4z^4+z^4x^4\right)=0\)

Nên.....(tự kết luận nha)

vũ thị ánh dương
23 tháng 1 2019 lúc 13:13

giải chi tiết ( vì sao ) đoạn dưới đây = 0 hộ mk vs :

 vì \(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)

\(2\left(x^4y^4+y^4z^4+z^4x^4\right)=0\)

                                           

alibaba nguyễn
23 tháng 1 2019 lúc 13:55

-Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow xy+yz+zx=0\)

Đặt \(xy=a,yz=b,zx=c\) thì bài toán thành

Cho \(a+b+c=0\)chứng minh \(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)

Ta có:

\(\left(a^2+b^2+c^2\right)^2-2\left(a^4+b^4+c^4\right)\)

\(=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)

\(=c^2\left(a+b\right)^2+c^2\left(a-b\right)^2-\left(a^2-b^2\right)^2-c^4\)

\(=c^2\left[\left(a+b\right)^2-c^2\right]+\left(a-b\right)^2\left[c^2-\left(a+b\right)^2\right]\)

\(=c^2\left(a+b+c\right)\left(a+b-c\right)+\left(a-b\right)^2\left(a+b+c\right)\left(c-a-b\right)\)

\(=\left(a+b+c\right)\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]=0\)

Vậy \(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)

Hùng Mạnh
Xem chi tiết
Rau
12 tháng 6 2017 lúc 8:16

thế nào nhỉ ( : 
Từ giả thiết => 1/x +1/y +1/z <= 1 
A/d  BĐT 1/(x +y+z) <= 1/9 ( 1/x + 1/y +1/z )  và 1/(x+y) <= 1/4 ( 1/x +1/y )
=> 1/(4x + y+z) = 1/(x+x + y+x + z+x) <= 1/9 ( 1/2x + 1/(y+x) + 1/(z+x) ) <= 1/9 ( 1/(2x)  + 1/4(1/y +1/x) + 1/4(1/x + 1/z)) 
Tương tự cộng lại và sử dụng 1/x +1/y +1/z <= 1
được P <= 1/6(1/x +1/y +1/z) <= 1/6 ĐPCM.

Lê Đình Quân
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 4 2020 lúc 23:29

\(P=\sqrt{\left(2x\right)^2+\left(\frac{1}{x}\right)^2}+\sqrt{\left(2y\right)^2+\left(\frac{1}{y}\right)^2}+\sqrt{\left(2z\right)^2+\left(\frac{1}{z}\right)^2}\)

\(P\ge\sqrt{\left(2x+2y+2z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)

\(P\ge\sqrt{4\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}=\frac{\sqrt{145}}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)