SO SANH
\(M=\frac{100^{100}+1}{100^{99}+1}\)
\(VA\)
\(N=\frac{100^{101}+1}{100^{100}+1}\)
so sanh A va B
A = 100^101 + 1 / 100^100 + 1
B = 100^100 + 1 / 100^99 + 1
A=100^101+1/100^100+1
B=100^100+1/100^99+1
A<100^101+1+99/100^100+1+99
A<100^101+100/100^100+100
A<100.(100^100+1)/100.(100^99+1)
A<100^100+1/100^99+1=B
=> A<B
Vậy A<B
A=2020^100-1:2020^99+1 so sanh a va b
B=2020^101-1:2020^100+1
So sánh \(M=\frac{100^{100}+1}{100^{99}+1}\)và\(N=\frac{100^{101}+1}{100^{100}+1}\)
M= \(\frac{100^{100}+1}{100^{99}+1}=\frac{100^{100}+100-99}{100^{99}+1}=\frac{100^{100}+100}{100^{99}+1}-\frac{99}{100^{99}+1}=\frac{100.\left(100^{99}+1\right)}{100^{99}+1}-\frac{99}{100^{99}+1}\)
\(=100-\frac{99}{100^{99}+1}\)
N= \(\frac{100^{101}+1}{100^{100}+1}=\frac{100^{101}+100-99}{100^{100}+1}=\frac{100^{101}+100}{100^{100}+1}-\frac{99}{100^{100}+1}\)
\(=\frac{100.\left(100^{100}+1\right)}{100^{100}+1}-\frac{99}{100^{100}+1}=100-\frac{99}{100^{100}+1}\)
Vi 100100+1>10099+1
=> \(\frac{99}{100^{99}+1}>\frac{99}{100^{100}+1}\)
=> \(100-\frac{99}{100^{99}+1}
uk ai cũng có lúc nhầm mà chẳng sao đâu bạn ak
So Sánh
a,A= \(\frac{2008^{2008}+1}{2008^{2009}+1}\)và B=\(\frac{2008^{2007}+1}{2008^{2008}+1}\)
b, M=\(\frac{100^{100}+1}{100^{99}+1}\)và N= \(\frac{100^{101}+1}{100^{100}+1}\)
a) Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2009^{2009}+1+2007}\)
\(A< \frac{2008^{2008}+2008}{2008^{2009}+2008}\)
\(A< \frac{2008.\left(2008^{2007}+1\right)}{2008.\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)
=> A < B
b) Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a;b;m \(\in\) N*)
Ta có:
\(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)
\(N>\frac{100^{101}+100}{100^{100}+100}\)
\(N>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)
=> M > N
Cho M=1/2.3/4.5/6...99.100 va N=2/3.4/5.6/7.... 100/101 va N=2/3.4/5.6/7..100/101
a) So sanh M va N b) Tinh M.N c) So sanh M va 1/10
So sánh A = \(\frac{100^{100}+1}{100^{99}+1}\)và B=\(\frac{100^{101}+1}{100^{100}+1}\)
Ta có: Theo cách tính phân số dư , phân số nào có phần dư lớn hơn thì lớn hơn.
\(\frac{100^{^{100^{ }}}+1}{100^{99}+1}\)\(-1\)=\(\frac{100^{100}}{100^{99}+1}-100^{99}\)
\(\frac{100^{101}+1}{100^{100}+1}-1=\frac{100^{101}-100^{100}}{100^{100}+1}\)
Suy ra:A>B
1. So sánh A và B biết : A = \(\frac{2019^{2019}+1}{2019^{2020}+1}\) ; B =\(\frac{2019^{2018}+1}{2019^{2019}+1}\)
2.So sánh M và N biết: M = \(\frac{100^{100}+1}{100^{99}+1}\) ; N= \(\frac{100^{101}+1}{100^{100}+1}\)
Hiện tại mình đang cần gấp giúp mk nha!
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)
cho A=1/2.3/4.5/6........99/100 va B=2/3.4/5.5/6.........100/101 so sanh A va B
so sanh
\(\frac{100^{100}+1}{100^{90}+1}\) \(\frac{100^{99}+1}{100^{89}+1}\)