Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn thị khánh ly
Xem chi tiết
Mr Lazy
8 tháng 7 2015 lúc 13:10

Chia từng khoảng x ra để bỏ tất cả trị tuyệt đối rồi làm; có vẻ là rất dài.

phạm quỳnh trang
31 tháng 3 2021 lúc 21:22

e hok lớp 6

mà bài này dễ có điều dài

Khách vãng lai đã xóa
kẻ hủy diệt decade siêu...
Xem chi tiết
Trần Thanh Phương
28 tháng 5 2018 lúc 11:09

Vì GTTĐ luôn lớn hơn hoặc bằng 0

=> x - 1 + x - 3 + x - 5 + x - 7 = 8

    4x - 16 = 8

     4x       = 8 + 16 

     4x       = 24

=> x = 6

Vậy.........

Trắng_CV
28 tháng 5 2018 lúc 11:15

Sai rồi nhé , Bonking . 

\(\left|x-1\right|=\orbr{\begin{cases}x-1\left(x>0\right)\\-x+1\left(x< 0\right)\end{cases}}\)

Clubmaths
28 tháng 5 2018 lúc 14:57

Bằng 5 nha bạn

Vô danh đây vip
Xem chi tiết
Vu Ngoc Mai
Xem chi tiết
Lê Hân
Xem chi tiết
ngọn gió băng giá
24 tháng 1 2017 lúc 12:50

x=1+2+3=6

Elizabeth
Xem chi tiết
Lightning Farron
9 tháng 11 2016 lúc 17:37

Bài 1:

\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)

\(\ge x-3+0+7-x=4\)

Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)

Vậy MinA=4 khi x=5

Bài 2:

\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)

\(\ge x-1+x-2+3-x+5-x=5\)

Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)

 

Lân Dũng
Xem chi tiết
Hà Văn Tới
7 tháng 3 2019 lúc 19:19

\(|x|+|x+1|+|x+2|+|x+3|=6x\)

\(\Rightarrow x+x+1+x+2+x+3+x+4=6x\)

\(\Rightarrow4x+6=6x\)

\(\Rightarrow6x-4x=6\)

\(\Rightarrow x=3\)

vậy:\(x=3\)

Nguyễn Phương Anh
Xem chi tiết
Nguyên Trinh Quang
Xem chi tiết
Phúc Nguyễn
21 tháng 1 2018 lúc 20:21

 Ta có: \(\hept{\begin{cases}\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\\3-\left(y+2\right)^2\le3\end{cases}}\)

Dấu "=" xảy ra khi:\(\hept{\begin{cases}-2\le x\le1\\y=-2\end{cases}}\)