cho đa thức f(x) bậc 3 với hệ số \(x^3\)là số nguyên thỏa mãn \(f\left(1999\right)=2000;f\left(2000\right)=2001\). Chứng minh \(f\left(2001\right)-f\left(1998\right)\)là hợp số
Cho đa thức f(x) bậc 4 với hệ số cao nhất là 1 và thỏa mãn: f(1)=10, f(2)=20, f(3)=30. Tính: \(\dfrac{f\left(12\right)+f\left(-8\right)}{10}+15\)
Cho đa thức f(x) bậc 4 có hệ số cao nhất là 1 và thỏa mãn: f(1)=10, f(2)=20, f(3)=30. Tính: \(\dfrac{f\left(12\right)+f\left(-8\right)}{10}+15\)
-Đề thiếu, giải hệ 4 ẩn phải có 4 phương trình.
Cho f(x) bậc 3 với hệ số của x3 là : k ( k thuộc Z ) thỏa mãn :
f(1999) = 2000 ; f(2000) = 2001
tính f(2001) - f(1998)
Cho đa thức f(x) bậc ba với hệ số thỏa mãn :\(|f\left(1\right)|=|f\left(2\right)|=|f\left(3\right)|=|f\left(4\right)|=|f\left(5\right)|=|f\left(6\right)|=|f\left(7\right)|=12\)
Tính \(|f\left(0\right)|\)
cho đa thức f(x) có bậc 3 với các hệ số nguyên và hệ số cao nhất là 1 thỏa mãn f(1999) = 2000; f(2000) = 2001. Chứng minh rằng f(x) không thể có nghiệm nguyên
cho đa thức f(x) có bậc 3 với các hệ số nguyên và hệ số cao nhất là 1 thỏa mãn f(1999) = 2000; f(2000) = 2001. Chứng minh rằng f(x) không thể có nghiệm nguyên
bài 1: Cho 2 đa thức P(x) và Q(x) thỏa mãn điều kiện: P(x)=Q(x)+ Q(1-x) vs mọi x thuộc R
Biết rằng các hệ số của đa thức P(x) là các số nguyên ko âm và P(0)=0. Tính P(P(3))
Bài 2: Cho đa thức f(x) là đa thứ bậc 4 có hệ số cao nhất là 1 thỏa mãn; f(1)=3;f(3)=11;f(5)=27
Tính f(-2) + 7*f(6)
Cho đa thức f(x) là đa thức bậc 4 với hệ số cao nhất là 1 thỏa mãn f(1)=3; f(3)=11 và f(5)=27. Tính f(-2)+7f(6).
Đặt g(x)= p(x)- x^2 -2
Thay x =1 vào biểu thức trên ta có
g(1)= p(1)-3
Mà p(1)=3 => g(1)=0
thay x=3 vào biểu thức trên ta có
g(3)= p(3)- 3^2 -2
g(3)= 0
thay x=5 vào biểu thức trên ta có:
g(5)=0
=> x=1;x=3;x=5 là các nghiệm của g(x)
=> g(x)= (x-1)(x-3)(x-5)(x+a)
Mà p(x) = g(x)+x^2+2
=>p(x)= (x-1)(x-3)(x-5)(x+a)+ x^2 +2
=>p(-2)= (-2-1)(-2-3)(-2-5)(-2+a)+ (-2)^2 +2
=>p(-2)= 216-105a
7p(6)=896+105a
=> 7p(6)+ p(-2)= 1112
Cho đa thức \(f\left(x\right)\) có bậc 3 và hệ số cao nhất bằng 2 thỏa mãn :\(f\left(2020\right)=2021\) và \(f\left(2021\right)=2022\). Tính giá trị của \(f\left(2022\right)-f\left(2019\right)=?\).
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán gợi ý giúp đỡ em tham khảo với ạ.
Em cám ơn nhiều lắm ạ!