Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nghiêm Thị Hải Anh
Xem chi tiết
Nguyễn Huy Tú
Xem chi tiết
Đinh Tuấn Việt
28 tháng 6 2016 lúc 20:09

undefined

Lê Minh Đức
28 tháng 6 2016 lúc 22:26

b/Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet) 

Nguyễn Huy Tú
Xem chi tiết
shunnokeshi
Xem chi tiết
Khổng Thị Hải Yến
Xem chi tiết
s2 Lắc Lư  s2
Xem chi tiết
Ahihiolala
Xem chi tiết
nguyễn thị kim oanh
Xem chi tiết
Minz Ank
Xem chi tiết
blua
30 tháng 6 2023 lúc 7:20

từ đề bài=> a2+2\(\sqrt{2}\)ab+2b2=2012-\(\sqrt{2}\). 2011
               =>a2+2b2-2012 =-\(\sqrt{2}\) . (2011-2ab)
               =>(a2+2b2-2012)2= 2(2011-2ab)2
=> 
(a2+2b2-2012)2≡0(mod2) mà 2 là số nguyên tố
 =>a2+2b2-2012≡0(mod2)
=> (a2+2b2-2012)2≡0(mod4) (1)
 ta có 2011-2ab là số lẻ vì 2ab chẵn=>(2011-2ab)2lẻ
=> 2(2011-2ab)chỉ chia hết cho 2 nhưng không chia hết cho 4 (2)

từ (1) và (2)=> (a2+2b2-2012)2= 2(2011-2ab)2 vô lí 
Vậy không tồn tại số nguyên a,b thoả mãn (a+b√2)2 = 2012 + 2011√2