tìm bộ ba số tự nhiên a;b;c sao cho 1/a+1a+1/(a+b)1/(a+b+c)=1
Tìm bộ ba số tự nhiên khác 0 sao cho: \(\dfrac{1}{a}+\dfrac{1}{a+b}+\dfrac{1}{a+b+c}=1\)
Tổng các số trong phương trình là 1, vì vậy ta có: 3a + 2b + c = 1.
Với số tự nhiên a, b và c, ta có thể thử các giá trị để tìm bộ ba số thỏa mãn phương trình.
Ví dụ, ta có thể thử a = 1, b = 1 và c = -4, thì 3a + 2b + c = 3 + 2 + (-4) = 1, phương trình được thỏa mãn.
Vậy, một bộ ba số tự nhiên khác 0 thỏa mãn phương trình đã cho là a = 1, b = 1 và c = -4.
Tìm các bộ ba số tự nhiên a, b, c khác 0 thoả mãn: 1/a+1/b+1/c=4/5
Tìm các bộ ba số tự nhiên a, b, c khác 0 thoả mãn: 1/a+1/b+1/c=4/5
Tìm các bộ ba số tự nhiên a, b, c khác 0 thỏa mãn. 1/a+1/b+1/c=4/5
Tìm các bộ ba số tự nhiên a,b,c khác 0 thỏa mãn: 1/a+1/b+1/c=4/5
Giả sử a<b<c
=> 1/a > 1/b > 1/c
=> 1/a + 1/a + 1/a > 4/5 > 1/c + 1/c + 1/c
=> 3.1/a > 4/5 > 3 . 1/c
Đến đây bạn có thể tụ làm đc rùi đó <3
bạn giải chi tiết ra đc ko cAPRI sHIRO
Tìm các bộ ba số tự nhiên a,b,c khác 0 thõa mãn :
1/a + 1/b + 1/c = 4/5
a = 10 b = 5 c = 2
Bởi vì :\(\frac{1}{10}\)+\(\frac{1}{5}\)+\(\frac{1}{2}\)=\(\frac{4}{5}\)
Nhớ k mk nha !!!!!!!!!
tìm bộ ba số tự nhiên thỏa mãn
\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}=1\)
Tìm bộ ba số tự nhiên (a,b,c) sao cho : \(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}=1\)
ĐKXĐ: \(a\ne0,a+b\ne0,a+b+c\ne0\)
do a,b,c là các số tự nhiên => \(\frac{1}{a}\ge\frac{1}{a+b};\frac{1}{a}\ge\frac{1}{a+b+c}\)
=>\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}=1\le\frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)
=>\(0< a\le3\)
Sau đó bạn xét từng trường hợp a=1,2,3 để giải pt nghiệm nguyên tìm b,c là xong nhé
làm tiếp:
Với a, b, c là số tự nhiên
Th1: a = 1 ta có: \(\frac{1}{1}+\frac{1}{1+b}+\frac{1}{1+b+c}=1\)
<=> \(\frac{1}{1+b}+\frac{1}{1+b+c}=0\)loại vì 1 + b; 1 + b + c >0
TH2: a = 2 ta có: \(\frac{1}{2}+\frac{1}{2+b}+\frac{1}{2+b+c}=1\)
<=> \(\frac{1}{2+b}+\frac{1}{2+b+c}=\frac{1}{2}\)
=> \(\frac{1}{2}\le\frac{1}{2+b}+\frac{1}{2+b}=\frac{2}{2+b}\)
=> \(b\le2\)
+) Với b = 0 => \(\frac{1}{2}+\frac{1}{2+c}=\frac{1}{2}\)loại
+) Với b = 1 => \(\frac{1}{3}+\frac{1}{3+c}=\frac{1}{2}\)<=> c = 3 (tm )
+) Với b = 2 => \(\frac{1}{4}+\frac{1}{4+c}=\frac{1}{2}\)<=> c = 0 (tm)
TH3: a = 3 ta có: \(\frac{1}{3}+\frac{1}{3+b}+\frac{1}{3+b+c}=1\)
<=> \(\frac{1}{3+b}+\frac{1}{3+b+c}=\frac{2}{3}\)
=> \(\frac{2}{3}\le\frac{1}{3+b}+\frac{1}{3+b}=\frac{2}{3+b}\)
=> b = 0 => c = 0
Vậy bộ 3 số tự nhiên là: (3; 0; 0) ; ( 2; 1; 3) ; (2; 2; 0)
bai nay de the cac ban