Cho a/b=b/c=c/d(a;b;c khác 0)
Tính A=a^2018×b^2019/c^4037
A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)
\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)
suy ra đpcm.
\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)
suy ra đpcm.
B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)
\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)
suy ra đpcm.
1, Cho a/b = c/d . C/m (a+b/c+d)^2=a^2+b^2/c^2+d^2 ?
2, Cho (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
C/m a/b=c/d ?
cho các số a, b,c,d sao cho a+b+c/a = a+b+d/c= a+c+d/b= c+b+d/a
Tính giá trị biểu thức dưới đây M= d/a+b+c=c/a+b+d= b/a+c+d=a/c+b+d
a, Cho a^2+b^2+c^2+3=2(a+b+c)
Chứng minh: a=b=c=1
b, Cho (a+b+c)^2=3(ab+ac+bc)
Chừng minh: a=b=c
c, Cho a,b,c,d (a,b,c,d khác 0) và (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
Chừng minh: a/c=b/d
d, Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh:a=b=c
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)
<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c=1
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)
<=> \(a^2-ab+b^2-bc+c^2-ac=0\)
<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c
#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.
a). Cho a/b=c/d( với b+d khác 0)
CM: a/b=a+c/b+c
b). Cho a/b+c/d( a,b,c,d khác 0)
CM: a-b/a=c-d/c
Cho a/b+c+d = b / c+d+a= c/a+b+d=d/a+b+c. Tính B= a+b/c+d + b+c/a+d+ c+d / a+b + d+a/b+c.
Cho: a/b+c+d=b/a+c+d=c/a+b+d=d/a+b+c
TínhA= (a+b/c+d)+(b+c/a+d)+(c+d/a+b)+(d+a/b+c)
Cho a+b+c+d khác 0 và a/(b+c+d)=b/(c+d+a)=c/(a+b+d)=d/(a+b+c).
Tính A=(a+c)/(b+d)+(a+c)/(b+d)+(a+c)/(b+d)+(b+c)/(a+d)
áp dụng tính chất dãy tỉ số bằng nhau ta có a/(b+c+d)=b/(c+d+a)=c/(a+b+d)=d/(a+b+c)=(a+b+c+d)/(b+c+d+c+d+a+a+b+d+a+b+c)
=(a+b+c+d)/(3a+3b+3c+3d)=1/3
vì a+b+c+d khác 0 nên a=b=c=d
từ đó =>A=(a+a)/(a+a)+(a+a)/(a+a)+(a+a)/(a+a)+(a+a)/(a+a)=1+1+1+1=4
cho : a/b+c+d = b/ c+d+a = c/d+a+b = d/a+b+c
tính : M = a+b/c+d = b+c/d+a= c+d/a+b = d+a/b+c
cho a/b+c+d=b/c+d+a=c/d+a+b=d/b+c+a
tính M = (a+b/c+d)+(b+c/a+d)+(c+d/a+b)+(d+a/b+c)
\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}.\)
\(\Rightarrow\hept{\begin{cases}3a=b+c+d\\3b=a+c+d\end{cases};\hept{\begin{cases}3c=a+b+d\\3d=a+b+c\end{cases}}}\)
Trừ vế theo vế ta có :\(\hept{\begin{cases}3\left(a-b\right)=b-a\\3\left(b-c\right)=c-b\\3\left(c-d\right)=d-c\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a-b=b-a=0\\b-c=c-b=0\\c-d=d-c=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=d\end{cases}}\)=>a=b=c=d
\(\Rightarrow M=1+1+1+1=4\)
Giải : Ta có: \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{b+c+a}\)
=> \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{b+c+a}{d}\)
=> \(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{b+c+a}{d}+1\)
=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\) => a = b = c = d
Khi đó, ta có: M = \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
= \(\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)
= \(1+1+1+1=4\)
Áp dụng tinh chất dãy tỉ số bằng nhau,ta có:
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
\(=\frac{a+b}{a+b+2\left(c+d\right)}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
\(\Rightarrow3\left(a+b\right)=a+b+2\left(c+d\right)\)
\(\Leftrightarrow2\left(a+b\right)=2\left(c+d\right)\)
\(\Leftrightarrow a+b=c+d\Leftrightarrow\frac{a+b}{c+d}=1\)
C/m tương tự ta được:\(\frac{b+c}{a+d};\frac{c+d}{a+b};\frac{a+d}{b+c}=1\)
\(\Rightarrow M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{a+d}{b+c}=1+1+1+1=4\)
Vậy M=4.Các bạn nhớ tk mk nhé!