Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Nhật Mai
Xem chi tiết
nguyen van hai
18 tháng 2 2016 lúc 22:18

phần a nhé

1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a)            do a+b+c=1

áp dụng bdt cosi cho các  so dương a/b,b/a,a/c,c/a,b/c,c/b

a/b+b/a >=2

b/c+c/b>=2

a/c+c/a>=2

cộng hết vào suy ra 1/a+1/b+1/c >=9       

Ngô Thị Phương Thảo
Xem chi tiết
Ngô Phương Trang
Xem chi tiết
Trương Huy Hoàng
29 tháng 12 2020 lúc 21:53

ĐK: a,b,c \(\ne\) 0

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

Lại có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Rightarrow\) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

Với \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}\)

\(\Rightarrow\) \(\dfrac{1}{b}+\dfrac{1}{c}=0\) \(\Rightarrow\) \(\dfrac{b+c}{bc}=0\) \(\Rightarrow\) b + c = 0 (vì bc \(\ne\) 0 do a,b,c \(\ne\) 0)

\(\Rightarrow\) b = -c \(\Rightarrow\) b5 = (-c)5 \(\Rightarrow\) b5 + c5 = 0

Thay b5 + c5 = 0 vào M ta được:

M = (a19 + b19).(b5 + c5).(c2001 + a2001)

M = (a19 + b19).0.(c2001 + a2001)

M = 0 (đpcm)

Chúc bn học tốt!

 

Nguyễn Nalu
Xem chi tiết
Đinh Đức Hùng
10 tháng 3 2017 lúc 19:15

Vì \(13^{2001}+1< 13^{2002}+1\) nên \(B=\frac{13^{2001}+1}{13^{2002}+1}< 1\)

\(\Rightarrow B=\frac{13^{2001}+1}{13^{2002}+1}< \frac{13^{2001}+1+12}{13^{2002}+1+12}=\frac{13^{2001}+13}{13^{2002}+13}=\frac{13\left(13^{2000}+1\right)}{13\left(13^{2001}+1\right)}=\frac{13^{2000}+1}{13^{2001}+1}=A\)

\(\Rightarrow B< A\)

Nguyễn Vũ Phương Thảo
Xem chi tiết
Nguyễn Thanh Hằng
15 tháng 8 2017 lúc 11:56

Ta có :

\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(c^2=bd\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\)

\(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)

Nguyễn Khánh Ngân
Xem chi tiết
nhi phan
Xem chi tiết
lutufine 159732486
Xem chi tiết
Kiệt Nguyễn
14 tháng 12 2019 lúc 19:40

b)Ta có:  \(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)

\(\Rightarrow a^{2001}+b^{2001}\)\(-a^{2000}-b^{2000}=0\)

\(\Rightarrow a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\)(1)

và \(a^{2001}+b^{2001}=a^{2002}+b^{2002}\)

\(\Rightarrow a^{2002}+b^{2002}\)\(-a^{2001}-b^{2001}=0\)

\(\Rightarrow a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\)(2)

Lấy (2) - (1), ta được: \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)(3)

Mà \(a^{2000}\left(a-1\right)^2\ge0\forall a\)và \(b^{2000}\left(b-1\right)^2\ge0\forall b\)

nên (3) xảy ra\(\Leftrightarrow\hept{\begin{cases}a^{2000}\left(a-1\right)^2=0\\b^{2000}\left(b-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1hoaca=0\\b=1hoacb=0\end{cases}}\)

Mà a,b dương nên a = 1 và b = 1

Khách vãng lai đã xóa
Kiệt Nguyễn
14 tháng 12 2019 lúc 19:34

a) Áp dụng BĐT Svac - xơ:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)

(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
20 tháng 12 2019 lúc 21:06

Làm khác bạn Kiệt xíu à nha:))

a

( Không dùng svác-sơ,à mà thiếu đk a,b,c>0 thì phải đó lutufine 159732486 )

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) ( vì a+b+c=1 )

Áp dụng BĐT Cô-si ta có:

\(a+b+c\ge3\sqrt[3]{abc}>0;\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}>0\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(đpcm\right)\)

b

Biến đổi Abel'  thôi nhỉ ( abel là khác nha,t thấy cách biến đổi này khá là giống với Abel nên đặt là Abel' )

\(a^{2002}+b^{2002}=\left(a^{2001}+b^{2001}\right)\left(a+b\right)-ab\left(a^{2000}+b^{2000}\right)\)

\(=\left(a+b\right)\left(a^{2002}+b^{2002}\right)-ab\left(a^{2002}+b^{2002}\right)\)

\(=\left(a^{2002}+b^{2002}\right)\left(a-ab+b\right)\)

Khử \(a^{2002}+b^{2002}\) đi ( do a,b dương ) ta có:

\(a-ab+b=1\Rightarrow a-ab+b-1=0\Rightarrow\left(a-1\right)\left(b-1\right)=1\)

\(\Rightarrow\orbr{\begin{cases}a=1\Rightarrow b=1\\b=1\Rightarrow a=1\end{cases}}\)

\(\Rightarrow a=b=1\)

Khách vãng lai đã xóa
Yasuo
Xem chi tiết
Trần Thùy Trang
19 tháng 4 2017 lúc 19:07

B = \(\frac{2001}{2002}+\frac{2002}{2003}\)

có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)

\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)

Vậy A>B