Tìm các số nguyên a;b sao cho ( 2008a +3b +1)(2008a + 2008a + b) = 225
chứng minh rằng :8p-1 là số nguyên tố thì 8p+1 là hợp số
tìm p;q là số nguyên tố sao cho 7p+qvaf pq+11 đều là số nguyên tố
tìm các số nguyên tố a,b,c sao cho: 2a+3b+6c=78
tìm số nguyên tơố p sao cho các số sau đều là số nguyên tố:
a)p+2 và p+10
b) p+10 và p+20
Tìm các số nguyên a biết : a-1 / 2a+1 là một số nguyên
a-1/2a+1 nguyên => 2a-2/2a+1 nguyên
mà 2a-2/2a+1=2a+1-3/2a+1=1-3/2a+1 nguyên
=> 2a+1 thuộc ước 3 như 1,3,-1,-1 từ đó tìm đc a
chúc bạn học giỏi
Bài làm
Để \(\frac{a-1}{2a+1}\in Z\)thì \(a-1⋮2a+1\)
\(\Rightarrow2\left(a-1\right)⋮2a+1\)
\(\Rightarrow2a+1-3⋮2a+1\)
\(\Rightarrow3⋮2a+1\)
\(\Rightarrow2a+1\)là ước của 3
\(\Rightarrow2a+1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow a\in\left\{-1;0;-2;1\right\}\)
Thử lại thấy các giá trị đều thỏa mãn !
Tìm các số nguyên a,v,c,d,e,biết tổng của chúng bằng 0 và a+b=c+d=d+e=2
Tìm các số nguyên x,y,z biết x+y+z=0;x+y=3;y+z=-1
cho p là số nguyên tố. Tìm tất cả các số nguyên a thỏa mãn a^2+a-p=0
a) Tìm tất cả các số nguyên a biết : (6a+1) chia hết (3a-1)
b) Tìm hai số nguyên a,b biết: a>0 và a(b-2)=3
c) Tìm số nguyên n sao cho 2n-1 là bội của n+3
Cho A = 2n-1/n-3
a) Tìm số nguyên n để A có giá trị nguyên
b)Tìm số nguyên n để A có giá trị lớn nhất
( các ban trình bày rõ ra dùm mình nha )
mik sẽ tick cho các bạn
a. Ta có:A = 2n-1 / n-3 = 2n-6+6-1 / n-3 = 2(n-3)+5 / n-3 = 2(n-3)/n-3+ 5/ n-3= 2+ (5/ n-3)
Để A nguyên thì 2+5/n-3 nguyên => 5/n-3 nguyên hay 5 chia hết cho n-3
=>n-3 thuộc ước của 5
=> n-3 thuộc {5, -5,1,-1}
=> n thuộc { 8, -2, 4, 2}
b. Để A có GTLN thì 5/n-3 có GTLN=> n-3 là số nguyên dương nhỏ nhất=> n - 3 = 1 => n = 1+3 = 4
=> A = 2 + 5 = 7
vậy GTLN của A = 7 khi n = 4
a) Để A có giá trị là số nguyên
Thì (2n—1) chia hết cho (n—3)
==> [2(n—3)+4) chia hết cho (n—3)
Vì (n—3) chia hết cho (n—3)
Nên (2+4) chia hết cho (n—3)
==> 6 chia hết cho (n—3)
==> (n—3) € Ư(6)
(n—3) €{1;-1;2;-2;3;-3;6;-6}
TH1: n—3=1
n=1+3
n=4
TH2: n—3=-1
n=-1+3
n=2
TH3: n—3=2
n=2+3
n=5
TH4: n—3=-2
n=-2+3
n=1
TH5:n—3=3
n=3+3
n=6
TH6: n—3=—3
n=-3+3
n=0
TH7: n—3=6
n=6+3
n=9
TH8: n—3=-6
n=-6+3
n=-3
Mình chỉ biết 1 câu thôi nha bạn
Câu b nè
\(b,A=\frac{2n-1}{n-3}\)
\(\Rightarrow A=\frac{2n-6+5}{n-3}\)
\(\Rightarrow A=2+\frac{5}{n-3}\)
Để A đạt GTLN \(\Rightarrow\frac{5}{n-3}>0\)và \(\frac{5}{n-3}\)phải đạt GTLN
\(\Rightarrow n-3\inƯ\left(5\right)\)và \(n-3\)đạt GTNN
\(\Rightarrow n-3=1\Leftrightarrow n=4\)
Vậy \(MaxA=2+5=7\Leftrightarrow n=4\)
tìm các số tự nhiên a,b biết rằng a,b là các số nguyên tố cùng nhau và 5a+7b/6a+5b=29/28
Tìm các số nguyên a và b thoả mãn: |a| + |b| = 0
Cách 1: Giá trị tuyệt đối của một số nguyên là một số tự nhiên và tổng hai số tự nhiên bằng 0 khi cả hai số đó đều bằng 0. Nên a = 0 và b = 0.
Cách 2: Vì |a| ≥ 0 và |b|≥ 0| nên |a| + |b| ≥ 0
Vì vậy |a| + |b| = 0 khi |a| = |b| = 0 hay a = b = 0.
Tìm số tự nhiên abc có ba chữ số khác nhau, chia hết cho các số nguyên tố a, b, c.
Do a, b, c là các số nguyên tố nên a, b, c ∈ {2;3;5;7}.
Nếu trong ba số a, b, c có cả 2 và 5 thì abc ⋮ 10 nên c = 0 loại
Vậy a, b, c ∈ {2;3;7} hoặc {3;5;7}
Trường hợp a, b, c ∈ {2;3;7} ta có: abc ⋮ 2 nên c = 2
Xét các số 372 và 732, chúng đều không chia hết cho 7.
Trường hợp a, b, c ∈ {3;5;7}: Vì a + b + c = 12 nên abc ⋮ 3. Để abc ⋮ 5, ta chọn c = 5.
Xét các số 375 và 735, chỉ có 735 ⋮ 7.
Vậy số phải tìm là 735.
tìm số tự nhiên abc có ba chữ số khác nhau,chia hết cho các số nguyên tố a,b,c
Số đó là: 735
Giải thích:
Vì: 735 có tận cùng là 5 => chia hết cho 5
735 có tổng các chữ số là 15 => chia hết cho 3
735:7=105=> chia hết cho 7