Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
le nguyen thuy duong
Xem chi tiết

Có A=(a+2002)(a+2003) là 2 nguyên liên tiếp

=>A chia hết cho 2 (1)

Có B=ab(a+b) 

Nếu a và b cùng là số chẵn=> ab﴾a+b﴿ chia hết cho 2

Nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿ => ab ﴾a+b﴿ chia hết cho 2

Nếu a và b cùng lẻ  => ﴾a+b﴿ chẵn => ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2

=> B=ab﴾a+b﴿ chia hết cho 2 (2)

Từ (1)và(2)=>A và B luôn là bội của 2 (đpcm)

Khách vãng lai đã xóa
Lan Nguyễn
Xem chi tiết
Kiệt Nguyễn
26 tháng 9 2020 lúc 21:58

a) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)

* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2  + 2k + 3)\(⋮\)3 mà 3 (3k+2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2  + 6k + 4)\(⋮\)3 mà 3 (3k2  + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)

b) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)

* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)

Khách vãng lai đã xóa
Đoàn Mạnh Tuấn
Xem chi tiết
doan trung kien
Xem chi tiết
SKT_ Lạnh _ Lùng
24 tháng 4 2016 lúc 17:42

sai đề : phải là: a1.a14+a14.a12<a1.a12  nếu thế thì giải như sau

Ta có : a1 + (a2 + a3 + a4) + … + (a11 + a12 + a13) + a14 + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 ; a1 > 0 ; a2 + a3 + a4 > 0 ; … ; a11 + a12 + a13 > 0 ; a15 + a16 + a17 > 0 ; a18 + a19 + a20 > 0 => a20 < 0.

Cũng như vậy : (a1 + a2 + a3) + … + (a10 + a11 + a12) + (a13 + a14) + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 => a13 + a14 < 0.

Mặt khác, a12 + a13 + a14 > 0 => a12 > 0.

Từ các điều kiện a1 > 0 ; a12 > 0 ; a14 < 0 => a1.a14 + a14a12 < a1.a12 [dpcm]

Ngoc Bich
Xem chi tiết
tỷ phú giàu nhất thế giớ...
Xem chi tiết
Kalluto Zoldyck
Xem chi tiết
Nguyễn Trang A1
6 tháng 3 2016 lúc 14:35

Gọi d = ƯCLN ( a;a - b)                  ( d \(\in\) N *)

=> a :  d    ;   a - b : d 

=>  b : d 

=> d \(\in\) ƯC( a;b)

Vì (a;b) = 1 nên d = 1

Vậy (a; a - b) = 1

Trần Phương Chi
Xem chi tiết
Mai Anh Tuấn
Xem chi tiết