1)Tim a;b biet :
a/5=b/4 vaf a2-b2=36
2)a/3=b/4 va a.b=48
Tim a la 1 so tu nhien biet : 4<a+1<5.Tim a ?
tim a thuoc z de 2a-1/2a+1 thuoc z(a thuoc q)tim a
cho M=(1+\(\frac{a}{a^2+1}\)) : (\(\frac{1}{a-1}\)- \(\frac{2a}{a^3-a^2+a-1}\))
tim a thuoc z de m thuoc z
tim a de m=7.tim a de m>0
ĐKXĐ bạn tự xét nhé
\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)
\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2-2a+1}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{\left(a-1\right)^2}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\frac{\left(a^2+a+1\right)\left(a^2+1\right)\left(a-1\right)}{\left(a^2+1\right)\left(a-1\right)^2}\)
\(M=\frac{a^2+a+1}{a-1}\)
Để M thuộc Z thì \(a^2+a+1⋮a-1\)
\(\Leftrightarrow a^2-a+2a-2+3⋮a-1\)
\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)+3⋮a-1\)
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)+3⋮a-1\)
Mà \(\left(a-1\right)\left(a+2\right)⋮a-1\)
\(\Rightarrow3⋮a-1\)
\(\Rightarrow a-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow a\in\left\{2;4;0;-2\right\}\)
Để M = 7 thì :
\(\frac{a^2+a+1}{a-1}=7\)
\(\Leftrightarrow a^2+a+1=7\left(a-1\right)\)
\(\Leftrightarrow a^2+a+1=7a-7\)
\(\Leftrightarrow a^2-6a+8=0\)
\(\Leftrightarrow a^2-2a-4a+8=0\)
\(\Leftrightarrow a\left(a-2\right)-4\left(a-2\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-2=0\\a-4=0\end{cases}\Rightarrow\orbr{\begin{cases}a=2\\a=4\end{cases}}}\)
Để M > 0 thì :
\(\frac{a^2+a+1}{a-1}>0\)
Vì \(a^2+a+1>0\forall a\), do đó để M > 0 thì : \(a-1>0\Leftrightarrow a>1\)
Chứng minh \(a^2+a+1>0\):
Đặt \(B=a^2+a+1\)
\(B=a^2+2\cdot a\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(B=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)
\(\Rightarrow B\ge0+\frac{3}{4}=\frac{3}{4}>0\)
\(\Rightarrow B>0\left(đpcm\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a+\frac{1}{2}=0\Leftrightarrow a=\frac{-1}{2}\)
Tim x
a, tim cac so nguyen x,y sao cho y/3 - 1/x = 1/3
b,tim cac so a va b biet a - b =5 va UCLN (a,b)/BCNN (a,b) =1/6
Luu y a/b tua la a phan b
tim gtnn
cho a+b+c=6
tim gtnn
A=(a+1)/a+(b+1)/b+(c+4)/c
Lời giải:
Ta có: \(A=\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+4}{c}\)
\(\Leftrightarrow A=1+\frac{1}{a}+1+\frac{1}{b}+1+\frac{4}{c}=3+\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)(a+b+c)\geq (1+1+2)^2\)
\(\Leftrightarrow \left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\geq \frac{4^2}{a+b+c}=\frac{16}{6}=\frac{8}{3}\)
Do đó: \(A\geq 3+\frac{8}{3}=\frac{17}{3}\) hay \(A_{\min}=\frac{17}{3}\)
Dấu bằng xảy ra khi \((a,b,c)=(\frac{3}{2}; \frac{3}{2}; 3)\)
cho P= 1 : a^2 +a+1
Tim nhung gia tri cua a de 1:P nho nhat va tim nhung gia tri do
\(P=a^2+a+1\)
\(=a^2+\frac{1}{2}\cdot2\cdot a+\frac{1}{4}+\frac{3}{4}\)
\(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\left(a+\frac{1}{2}\right)^2\ge0\Rightarrow\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow P\ge\frac{3}{4}\)
dấu "=" xảy ra khi :
\(\left(a+\frac{1}{2}\right)^2=0\Rightarrow a+\frac{1}{2}=0\Rightarrow a=-\frac{1}{2}\)
vậy
1/a+2 + 3/b+4 <= c+1/c+3 . Tim Qmin =(a+1)(b+1)(c+1) . Tim dau bang xay ra nhu the nao ???
A = 2/ x-1 .tim dieu kien cua x de A la phan so . tim A khi x = 2 ; x = -3. tim dieu kien cua x de A la so nguyen ( A thuoc Z )
cho A=6n-1/3n+1(n thuoc z) hoi a tim n de A nguyen b tim n de A co gia tri nho nhat
cho A=6n-1/3n+1(n thuoc z) hoi a tim n de A nguyen b tim n de A co gia tri nho nhat
Giải:Ta có:A=\(\frac{6n-1}{3n+1}=\frac{6n+2-3}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{3}{n+1}=2-\frac{3}{n+1}\)
a,Để A nguyên thì \(\frac{3}{n+1}\in Z\)\(\Rightarrow3⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)
\(\Rightarrow n\in\left\{-4,-2,0,2\right\}\)
b,Để A có GTNN thì \(\frac{3}{n+1}\) lớn nhất
\(\Rightarrow n+1\) bé nhất và n+1>0
\(\Rightarrow n+1=1\Rightarrow n=0\)
Nên GTNN của A=-1
a, Cho F(x) = a x+b . Tim a,b biet f(0) = 3 va F(2) =-1
b, Cho F(x) =a x+ b. Tim a,b biet F(1) = -1 va F(-2) = 8
c, Cho F(x) =a x +b .tim a,b biet F(0) = 1 va F(-2) = -9