Cho \(\begin{cases}a+b\ne0\\a;b\ne0\end{cases}\)
CMR :
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)
cho \(\hept{\begin{cases}b+c\ne0\\c+a\ne0\\b-a\ne0\end{cases}}\)và c < 0, b > 0 thỏa mãn \(\frac{a}{b+c}-\frac{b}{c+a}+\frac{c}{b-a}=0\)CMR a < 0
Cho \(\hept{\begin{cases}a+b\ne0\\c\ne0\\c^2=2\left(ac+bc-ab\right)\end{cases}}\)CMR:\(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
Tìm các số tự nhiên \(a\ne b\ne0\)sao cho \(\hept{\begin{cases}a+b=n\\ab⋮n\end{cases}}\)(n thuộc N*)
Cho a,b,c thỏa mãn \(\hept{\begin{cases}a+\frac{2}{b}=b+\frac{2}{c}=c+\frac{2}{a}\\abc\ne0\end{cases}}\)
Chứng minh :\(|abc|=2\sqrt{2}\)
cho abc\(\ne0\)và \(\hept{\begin{cases}a+b+c=0\\a^3+b^3+c^3=a^5+b^5+c^5\end{cases}}\)
tính \(a^2+b^2+c^2\)
Ta có: \(c=-a-b\), tính được các đại lượng:
\(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3=-3ab\left(a+b\right)\)
\(a^5+b^5+c^5=a^5+b^5-\left(a+b\right)^5=-5ab\left(a^3+b^3\right)-10a^2b^2\left(a+b\right)\)
\(=-5ab\left(a+b\right)\left(a^2+b^2-ab\right)-10a^2b^2\left(a+b\right)\)
2 biểu thức trên bằng nhau nên:
\(5ab\left(a+b\right)\left[a^2+b^2-ab+2ab\right]=3ab\left(a+b\right)\)
\(\Leftrightarrow\orbr{\begin{cases}a+b=0\text{ (1)}\\5\left(a^2+b^2+ab\right)=3ab\text{ (2)}\end{cases}}\text{ }\left(do\text{ }ab\ne0\right)\)
\(\left(2\right)\Leftrightarrow5a^2+5b^2-2ab=0\Leftrightarrow4a^2+4b^2+\left(a-b\right)^2=0\)
\(\Leftrightarrow a=b=0\) --> loại
Vậy \(a+b=0\)
\(\Rightarrow c=-a-b=0\)--> loại
Vậy ko tồn tại a, b, c thỏa giả thiết bài toán
Cho
\(\hept{\begin{cases}a+b+c=abc\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\\a,b,c\ne0\end{cases}}\)
Tính \(\frac{1}{a^{2\:}}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.1=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Chúc bạn học tốt !!!
Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)
F(x)\(\hept{\begin{cases}\frac{\sqrt{ax+1}\sqrt[3]{bx+1}-1}{x},\\a+b,x=0\end{cases}x\ne0}\)
cho a và b là các số thực khác 0 tìm hệ thức liên hệ giữa a và b dể hàm số sau liên tục tại x=0
Xét 3 số thực a, b, c thay đổi và thỏa mãn điều kiện \(\hept{\begin{cases}a^3+b^3+c^3=3abc\\a+b+c\ne0\end{cases}}\). Chứng minh rằng biểu thức \(Q=\frac{a^2+3b^2+5c^2}{\left(a+b+c\right)^2}\)có giá trị không đổi.
Ta có:
\(a^3+b^3+c^3=3abc\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Do a+b+c khác ) nên:
\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\frac{1}{2}[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]=0\)
\(\Rightarrow a=b=c\)
Do đó:
Q=\(\frac{a^2+3b^2+5c^2}{\left(a+b+c\right)^2}=\frac{9a^2}{9a^2}=1\)
có giá trị ko đổi