\(\frac{a}{c}=\frac{a-b}{b-c}\left(a;c\ne0;a\ne b;b\ne c\right)\)
\(Cmr:\frac{1}{a}+\frac{1}{a-b}=\frac{1}{b-c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\ge a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a-\frac{a^2}{a+b}+b-\frac{b^2}{b+c}+c-\frac{c^2}{c+a}\ge a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
\(\Leftrightarrow a^2\left(a+b\right)\left(a+c\right)+b^2\left(b+a\right)\left(b+c\right)+c^2\left(c+a\right)\left(c+b\right)\ge a^2\left(a+c\right)\left(b+c\right)+b^2\left(b+a\right)\left(c+a\right)+c^2\left(c+b\right)\left(a+b\right)\)
\(\Leftrightarrow a^4+b^4+c^4\ge a^2c^2+a^2b^2+b^2c^2\left(lđ\right)\)
\(\Leftrightarrow\frac{a^2+bc}{b+c}+\frac{b^2+ca}{c+a}+\frac{c^2+ab}{a+b}\ge a+b+c\)
CMR
\(\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
Ta có :
\(VT=\frac{1}{2}\left[\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\right]\)
\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2}{\left(a-b\right)\left(a-c\right)}+\frac{\left(a-c\right)^2}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}+\frac{\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{b^2-2bc+c^2+a^2-2ac+c^2+a^2-2ab+b^2}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{1}{2}\left[\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\right]\)
\(=\frac{a^2+b^2+c^2-ab-bc-ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)(1)
Lại có :
\(VP=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{\left(b-c\right)\left(a-c\right)+\left(a-b\right)\left(a-c\right)-\left(a-b\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{ab-bc-ac+c^2+a^2-ac-ab+bc-ab+ac+b^2-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{a^2+b^2+c^2-ab-ac-bc}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)(2)
Từ (1) và (2) \(\RightarrowĐPCM\)
Chứng minh
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\)
Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(b-a\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)
Chứng minh tương tự,ta được:
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)
\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\left(đpcm\right)\)
CMR: Với mọi a,b,c>0
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{b\left(b+c\right)}\left(a-b\right)^2+\frac{1}{c\left(c+a\right)}\left(b-c\right)^2+\frac{1}{a\left(a+b\right)}\left(c-a\right)^2\)
CM \(\frac{b^2-c^2}{\left(a+b\right)\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right)\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right)\left(c+b\right)}=\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{a-b}{a+b}\)\(\frac{a-b}{a+b}\)
ta có:
\(\frac{b^2-c^2}{\left(a+b\right).\left(a+c\right)}=\frac{b^2-a^2+a^2-c^2}{\left(a+b\right).\left(a+c\right)}=\frac{\left(b-a\right).\left(b+a\right)+\left(a-c\right).\left(a+c\right)}{\left(a+b\right).\left(a+c\right)}=\frac{b-a}{a+c}+\frac{a-c}{a+b}\left(1\right)\)
\(\frac{c^2-a^2}{\left(b+c\right).\left(b+a\right)}=\frac{c^2-b^2+b^2-a^2}{\left(b+c\right).\left(b+a\right)}=\frac{\left(c-b\right).\left(b+c\right)+\left(b-a\right).\left(a+b\right)}{\left(b+c\right).\left(b+a\right)}=\frac{c-b}{b+a}+\frac{b-a}{b+c}\left(2\right)\)
\(\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}=\frac{a^2-c^2+c^2-b^2}{\left(c+a\right).\left(c+b\right)}=\frac{\left(a-c\right).\left(a+c\right)+\left(c-b\right).\left(c+b\right)}{\left(c+a\right).\left(c+b\right)}=\frac{a-c}{c+b}+\frac{c-b}{c+a}\left(3\right)\)
từ (1),(2),(3)
\(\Rightarrow\frac{b^2-c^2}{\left(a+b\right).\left(a+c\right)}+\frac{c^2-a^2}{\left(b+c\right).\left(b+a\right)}+\frac{a^2-b^2}{\left(c+a\right).\left(c+b\right)}\)
\(=\frac{b-a}{a+c}+\frac{a-c}{a+b}+\frac{c-b}{a+b}+\frac{b-a}{b+c}+\frac{a-c}{c+b}+\frac{c-b}{c+a}=\frac{c-a}{a+c}+\frac{b-c}{b+c}+\frac{a-b}{a+b}\Rightarrowđpcm\)
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Rightarrow\frac{a}{b-c}=-\left(\frac{b}{c-a}+\frac{c}{a-b}\right)\)
\(\Rightarrow\frac{a}{b-c}=-\frac{ab-b^2+c^2-ac}{\left(c-a\right)\left(a-b\right)}\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab-c^2+ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Tương tự:
\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ba-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)};\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Cộng lại:
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{0}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
P/S:Đây nha ! Bài này lớp 7 chắc xem xong key cũng chắc là đang khó hiểu nhỉ ? Đưa giấy bút ra rồi nháp vài cái là hiểu ngay thôi !
Có người nhờ giải ấy @gunny :33
cho a,b,c khác nhau CMR:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{b-c}+\frac{2}{c-a}+\frac{2}{a-b}.\)
Câu hỏi của Bùi Minh Quân - Toán lớp 9 - Học toán với OnlineMath
Chứng minh rằng nếu a,b,c khác nhau thì \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
\(VT=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{-1}{a-c}+\frac{1}{a-b}+\frac{-1}{b-a}+\frac{1}{b-c}+\frac{-1}{c-b}+\frac{1}{c-a}\)
\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}=VP\)
Cho a,b,c khác nhau. Chứng minh rằng \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Ta có:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{c-a}+\frac{1}{a-b}\)
Tương tự:
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b}{\left(b-c\right)\left(b-a\right)}+\frac{b-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)
Và: \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c}{\left(c-a\right)\left(c-b\right)}+\frac{c-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)
=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)
=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
=> đpcm
Cho a,b,c chứng minh
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Ta có
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)
Tương tự ta có
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\)
\(\frac{a-b}{\left(c-b\right)\left(c-a\right)}=\frac{1}{b-c}+\frac{1}{c-a}\left(3\right)\)
Từ (1) (2) và (3) ta có
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(đpcm\right)\)
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{c-b}{\left(a-b\right)\left(c-a\right)}=\frac{\left(c-a\right)+\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)
Làm tương tự ta được:\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\)
\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)
\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(ĐPCM\right)\)