Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)(với a,b,c \(\ne0\); b\(\ne c\)) CMR : \(\frac{a}{b}=\frac{a-c}{c-b}\)
1/ Rút gọn biểu thức:\(G=\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x}\)
2/ Cho biểu thức: \(M=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
a. Tìm ĐKXĐ
b. Rút gọn M
c. Tìm giá trị nhỏ nhất của M
3/ Chứng minh: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{a+b}|\)với \(a\ne0,b\ne0,a+b\ne0\)
4/ Biết a,b,c là số dương và ab + bc + ac =1. Hãy tính tổng:
\(M=a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Ai giải giúp mình bài 1 với bài 4 trước đi
cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b,c\ne0;b\ne c\right)\)) chứng minh rằng : \(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b,c\ne0,b\ne c\right)\).Chứng minh rằng\(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho: \(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b},\right)\left(a,b,c\ne0,b\ne c\right)\) Chứng minh rằng: \(\frac{a}{b}=\frac{a-b}{c-b}\)
1. Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)với a,b,c \(\ne0,b\ne c\). Chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)
theo bài ra ta có:
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{b}{ab}+\frac{a}{ab}\right)\\ \Rightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\\ \Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
=> 2ab = c(a + b)
=> ab + ab = ca + cb
=> ab - cb = ca - ab
=> b( a - c ) = a( c - b )
=> \(\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
cho: \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) ( với \(a,b,c\ne0;b\ne c\)) cmr: \(\frac{a}{c}=\frac{a-c}{c-b}\)
\(\frac{1}{c}=\frac{1}{2}(\frac{1}{a}+\frac{1}{b})\)
\(\Rightarrow\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\Rightarrow\frac{2}{c}=\frac{a}{ab}+\frac{b}{ab}\)
\(\Rightarrow\frac{2}{c}=\frac{a+b}{ab}\)
\(\Rightarrow2ab=(a+b)\cdot c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ab-bc=ac-ab\)
\(\Rightarrow b(a-c)=a(c-b)\)
\(\frac{a}{c}=\frac{a-c}{c-b}(đpcm)\)
\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}.\left(\frac{a+b}{ab}\right)\Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
\(\Rightarrow ac+cb=2ab\Rightarrow ac-ab=-cb+ba\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
bn ghi sai đề kìa :v
Cho \(a,b,c\in Z;abc\ne0;\frac{a^2+b^2}{2}=ab;\frac{b^2+c^2}{2}=bc;\frac{a^2+c^2}{2}=ac\)
Tính : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có : \(\frac{a^2+b^2}{2}=ab\Rightarrow a^2+b^2=2ab\)
\(\Rightarrow a^2-ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\)
Tương tự : \(\frac{b^2+c^2}{2}=bc\Rightarrow b=c\)
\(\frac{a^2+c^2}{2}=ac\Rightarrow a=c\)
Áp dụng t/c bắc cầu ta dc : \(a=b=c\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a\times3=9a\)
=>a2+b2=2ab
=>a2-2ab+b2=0
=>(a-b)2=0=>a=b
tương tự=>b=c
=>a=b=c
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a.3=9a\)
Cho \(a,b,c\in Z;abc\ne0,\frac{a^2+b^2}{2}=ab;\frac{b^2+c^2}{2}=bc,\frac{a^2+c^2}{2}=ac\)
Tính : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{b}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
\(=3+\frac{a^2+b^2}{ab}+\frac{a^2+c^2}{ac}+\frac{b^2+c^2}{bc}\)
\(=3+\frac{a^2+b^2}{\frac{a^2+b^2}{2}}+\frac{a^2+c^2}{\frac{a^2+c^2}{2}}+\frac{b^2+c^2}{\frac{b^2+c^2}{2}}\)
\(=3+2+2+2=9\)
\(Cho\)\(abc\ne0,và\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right).\)