Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Văn Chí Vĩnh
Xem chi tiết
Lê Song Phương
Xem chi tiết
Nguyễn Ngọc Anh Minh
19 tháng 10 2023 lúc 15:15

\(ac+bd=\left(b+d+a-c\right)\left(b+d-a+c\right)\)

\(\Leftrightarrow ac+bd=\left(b+d\right)^2-\left(a-c\right)^2\)

\(\Leftrightarrow ac+bd=b^2+d^2+2bd-a^2-c^2+2ac\)

\(\Leftrightarrow a^2-c^2=b^2+d^2+ac+bd\) (1)

Ta có

\(\left(ab+cd\right)\left(ad+bc\right)=a^2bd+ab^2c+acd^2+bc^2d=\)

\(=bd\left(a^2+c^2\right)+ac\left(b^2+d^2\right)\) (2)

Thay (1) vào (2)

\(\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2+ac+bd\right)+ac\left(b^2+d^2\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=bd\left(b^2+d^2\right)+bd\left(ac+bd\right)+ac\left(b^2+d^2\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(b^2+d^2\right)\left(ac+bd\right)+bd\left(ac+bd\right)\)

\(\Leftrightarrow\left(ab+cd\right)\left(ad+bc\right)=\left(ac+bd\right)\left(b^2+d^2+bd\right)\) (3)

Do \(a>b>c>d\)

\(\Rightarrow\left(a-d\right)\left(b-c\right)>0\Leftrightarrow ab-ac-bd+cd>0\)

\(\Leftrightarrow ab+cd>ac+bd\) (4)

Và 

\(\left(a-b\right)\left(c-d\right)>0\Leftrightarrow ac-ad-bc+bd>0\)

\(\Leftrightarrow ac+bd>ad+bc\) (5)

Từ (4) và (5) \(\Rightarrow ab+cd>ad+bc\) 

Ta có

(3)\(\Leftrightarrow b^2+d^2+bd=\dfrac{\left(ab+cd\right)\left(ad+bc\right)}{\left(ac+bd\right)}\) (6)

Vế trái là số nguyên => vế phải cũng phải là số nguyên

Giả sử ab+cd là số nguyên tố mà \(ab+cd>ac+bd\)

\(\Rightarrow UC\left(ab+cd;ac+bd\right)=1\) => ab+cd không chia hết cho ac+bd

=> để vế phải của (6) là số nguyên \(\Rightarrow ad+bc⋮ac+bd\Rightarrow ad+bc>ac+bd\) Mâu thuẫn với (5) nên giả sử sai => ab+cd không thể là số nguyên tố

Nguyễn thị ngọc hân
18 tháng 10 2023 lúc 11:37

mình là người mới ,cho mình hỏi làm sao để kiếm xu đổi quà

 

Vũ Nam Khánh
Xem chi tiết
Phùng Minh Quân
28 tháng 3 2018 lúc 18:40

Ta có : 

\(a+b=c+d\)

\(\Rightarrow\)\(a=-b+c+d\)

Thay \(a=-b+c+d\) vào \(ab+1=cd\) ta được : 

\(\left(-b+c+d\right)b+1=cd\)

\(\Leftrightarrow\)\(-b^2+bc+bd+1=cd\)

\(\Leftrightarrow\)\(\left(-b^2+bd\right)+\left(bc-cd\right)=-1\)

\(\Leftrightarrow\)\(-b\left(b-d\right)+c\left(b-d\right)=-1\)

\(\Leftrightarrow\)\(\left(c-b\right)\left(b-d\right)=-1\)

Vì \(a,b,c,d\inℤ\) nên có 2 trường hợp : 

Trường hợp 1 : 

\(\hept{\begin{cases}c-b=1\\b-d=-1\end{cases}\Leftrightarrow\hept{\begin{cases}c=b+1\\b+1=d\end{cases}\Leftrightarrow}\hept{\begin{cases}c=b+1\\c=d\end{cases}}}\)

\(\Rightarrow\)\(c=d\)

Trường hợp 2 : 

\(\hept{\begin{cases}c-b=-1\\b-d=1\end{cases}\Leftrightarrow\hept{\begin{cases}b=c+1\\b=d+1\end{cases}}}\)

\(\Rightarrow\)\(c+1=d+1\)

\(\Rightarrow\)\(c=d\)

Vậy \(c=d\)

Chúc bạn học tốt ~ 

Fuck You Bitch
Xem chi tiết
Hiển hoàng
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
8 tháng 12 2016 lúc 20:16

a + b = c + d \(\Rightarrow\)a = c + d - b

Thay vào ab + 1 = cd 

\(\Rightarrow\)(c + d - b) x b + 1 = cd

\(\Leftrightarrow\)cd + db - cd + 1 - b2 = 0

\(\Leftrightarrow\)b(c - b) - d(c - b) + 1 = 0

\(\Leftrightarrow\)(b - d)(c - b) = -1

a,b,c,d nguyên dương nên (b-d) và (c-b) nguyên dương

Mà (b-d)(c-b) = -1 nên có 2 TH:

TH1: b - d = -1 và c - b = 1

\(\Leftrightarrow\)d = b + 1 và c = b + 1

\(\Rightarrow\)c = d

TH2: b - d = 1 và c - b = -1

\(\Leftrightarrow\)d = b - 1 và c = b - 1

\(\Rightarrow\)c = d 

Vậy từ 2 TH ta có c = d

k mình nha

Chúc bạn học giỏi

Mình cảm ơn bạn nhiều

Trần Linh Chi
Xem chi tiết
Nguyễn Anh Quân
3 tháng 2 2018 lúc 21:30

a^5+b^5=4.(c^5-+d^5)

<=> a^5+b^5+c^5+d^5 = 5.(c^5+d^5) chia hết cho 5

Xét : a^5-a = a(a-2).(a+2).(a-1).(a+1)+5.a.(a-1).(a+1) chia hết cho 5 

Tương tự : b^5-b ; c^5-c ; d^5-d đều chia hết cho 5

=> a^5+b^5+c^5+d^5-(a+b+c+d) chia hết cho 5

Mà a^5+b^5+c^5+d^5 chia hết cho 5

=> a+b+c+d chia hết cho 5

Tk mk nha

lê duy mạnh
6 tháng 10 2019 lúc 20:16

bạn xét hiệu là ra

Khánh Đoàn
Xem chi tiết
NGUYỄN AN PHONG
Xem chi tiết
Nguy
Xem chi tiết
Nguyễn Ngọc Hân
24 tháng 2 2021 lúc 22:04

GTLM=/????????????????????????????????????????????????????????????????/

Khách vãng lai đã xóa
Lê Bích Phương
24 tháng 2 2021 lúc 22:11

Bn Hân oi : GTLN = giá trị lớn nhất 

Còn giải bài trên chế bó tay chấm com  ^ ^'  hich

Khách vãng lai đã xóa
Võ Anh Thư
24 tháng 2 2021 lúc 22:14

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

Khách vãng lai đã xóa