Cho a,b,c,d T/m: a+b+c+d=0;a^3+b^3+c^3+d^3 khác 0. Tính P= (a^3+b^3+c^3+d^3) / abc+acd+abd+bcd)
Bài 1: cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2015
Tìm max cua a/b +c/d
Bài 2: cho a,b,c,d thuộc z', >0 t/m : a+b=c+d=2016
Tìm min cua (a+b)/(a.c + b.c)
cho a+b+c/d=b+c+d/a=c+d+a/b=d+a+b/c
vs a,b,c,d khác 0.
TÝnh M=(a+b).(b+c)/(c+d).(a+d)
Cho a+b+c+d khác 0; b+3 khác 0; d+a khác 0 và \(\frac{a+b}{b+3}\)=\(\frac{3+d}{d+a}\). Tìm a
\(\frac{a+b}{b+3}=\frac{3+d}{a+d}=\frac{a+b+d+3}{a+b+d+3}=1\)
\(\frac{a+b}{b+3}=1\)do đó a+b=b+3 váy a=3
Cho a+b+d+3\(\) khác 0;b+3 khác 0;d+a khác 0 và\(\frac{a+b}{b+3}=\frac{3+d}{d+a}\). Tìm a
Ta có :\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}\)=1
\(\Rightarrow\)a+b=b+3
\(\Rightarrow\)a=3
Chúc bạn học tốt!
Cho hình bình hành $A B C D$ tâm $O . \mathrm{M}$ là một điểm bất kì trong mặt phẳng. Chứng minh rằng a) $\overrightarrow{B A}+\overrightarrow{D A}+\overrightarrow{A C}=\overrightarrow{0}$ b) $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}+\overrightarrow{O D}=\overrightarrow{0}$ c) $\overrightarrow{M A}+\overrightarrow{M C}=\overrightarrow{M B}+\overrightarrow{M D}$
a) Ta có
Theo quy tắc hình bình hành ta có suy ra
b) Vì là hình bình hành nên ta có:
Tương tự: .
c) Cách 1: Vì là hình bình hành nên
cho a,b,c,d >0 A=\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
Tìm phần nguyên của A
Lời giải:
Ta thấy, với mọi $a,b,c,d>0$ ta có:
$\frac{a}{a+b+c}>\frac{a}{a+b+c+d}$
$\frac{b}{b+c+d}>\frac{b}{b+c+d+a}$
$\frac{c}{c+d+a}>\frac{c}{c+d+a+b}$
$\frac{d}{d+a+b}>\frac{d}{d+a+b+c}$
Cộng theo vế:
$\Rightarrow A>\frac{a+b+c+d}{a+b+c+d}$ hay $A>1(1)$
-----------------------
Mặt khác:
Xét hiệu:
$\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0$
$\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}$
Tương tự:
$\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}$
$\frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}$
$\frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}$
Cộng theo vế:
$A< \frac{2(a+b+c+d)}{a+b+c+d}$ hay $A< 2(2)$
Từ $(1);(2)\Rightarrow 1< A< 2$
$\Rightarrow$ \(\left \lfloor A\right \rfloor=1\)
Cho a;b;c;d>0 Tìm giá trị nhỏ nhất của : \(\dfrac{a^3}{b+c+d}+\dfrac{b^3}{c+d+a}+\dfrac{c^3}{d+a+b}+\dfrac{d^3}{a+b+c}\)
Cho a,b,c,d \(\ne\) 0 thỏa mãn:
\(\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{a+b+d}{c}=\dfrac{a+b+c}{d}\)
Tính \(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Cho a, b, c, d > 0. Tìm giá trị nhỏ nhất của biểu thức:
P = \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}+\frac{b+c+d}{a}+\frac{c+d+a}{b}+\frac{d+a+b}{c}+\frac{a+b+c}{d}\)
Do a,b,c,d > 0 nên \(b+c+d>0,c+d+a>0,d+a+b>0,a+b+c>0\)
Áp dụng BĐT AM - GM ta có :
\(\frac{a}{b+c+b}+\frac{b+c+d}{a}\ge2\sqrt{\frac{a}{b+c+d}.\frac{b+c+d}{a}}=2\)
Tương tự ta có được điều phải chứng minh
Khi đó \(P\ge2+2+2+2=8\)