Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Yến Nga
Xem chi tiết
Nguyễn Thị Hiền Nga
12 tháng 12 2017 lúc 20:24

Ta có : a2 = bc \(\Rightarrow\) \(\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)\(\Rightarrow\)\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)(đpcm)

Sách Giáo Khoa
Xem chi tiết
Trần Ngọc Bích Vân
10 tháng 6 2017 lúc 10:40

Ta có:

\(a^2\) \(=b.c\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\)

Từ \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Đậu Thị Khánh Huyền
10 tháng 10 2017 lúc 16:39

Ta có:

\(a^2=b.c\) \(\Rightarrow\dfrac{a}{c}=\dfrac{b}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{a}{c}=\dfrac{b}{a}=\dfrac{a+b}{c+a}=\dfrac{a-c}{b-a}\)

\(Từ\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}\Rightarrow\dfrac{a+b}{c+a}=\dfrac{c+a}{c-a}\)

\(\)Vậy \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

Ruby
Xem chi tiết
Võ Trang Nhung
Xem chi tiết
Le Thi Khanh Huyen
25 tháng 7 2016 lúc 21:07

\(a^2=bc\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau; ta có :

\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Lê Thành Nam
Xem chi tiết
Xem chi tiết
Ngoc Anhh
30 tháng 9 2018 lúc 20:45

Ta có a2 = bc 

<=> a . a = b .c 

<=> \(\frac{a}{b}=\frac{c}{a}\Leftrightarrow\frac{b}{a}=\frac{a}{c}\)

Áp dụng t/c dãy tỉ số = nhau , ta có 

\(\frac{b}{a}=\frac{a}{c}=\frac{a+b}{a+c}\)(1)

\(\frac{b}{a}=\frac{a}{c}=\frac{a-b}{c-a}\)(2)

(1),(2) \(\Leftrightarrow\frac{a+b}{a+c}=\frac{a-b}{c-a}\Leftrightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\left(đpcm\right)\)

Nguyễn Thị Hiền Lương
Xem chi tiết
An Trịnh Hữu
13 tháng 7 2017 lúc 10:51

Áp dụng tính chất 2 phân số bằng nhau:\(\dfrac{a}{b}=\dfrac{c}{d}=>ad=bc\) , ta có:

\(=>\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)

\(=>ac-a^2+bc-ab=ac+a^2-bc-ab\)

\(=>-a^2+bc=a^2-bc\)

\(=>bc-a^2-\left(a^2-bc\right)=0\)

\(=>2bc-2a^2=0=>2\left(bc-a^2\right)=0=>bc-a^2=0\)

\(=>bc=a^2\)

CHÚC BẠN HỌC TỐT........

Nguyễn Thị Hải Yến
Xem chi tiết
do linh
Xem chi tiết
Pham Quoc Cuong
7 tháng 5 2018 lúc 13:28

Do \(c^2+2\left(ab-ac-bc\right)=0\Leftrightarrow-c^2=2\left(ab-ac-bc\right)\) 

Ta có; \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a^2+c^2-c^2+\left(a-c\right)^2}{b^2+c^2-c^2+\left(b-c\right)^2}=\frac{a^2+c^2+2\left(ab-ac-bc\right)+\left(a-c\right)^2}{b^2+c^2+2\left(ab-ac-bc\right)+\left(b-c\right)^2}\)

\(=\frac{2\left(a-c\right)^2+2\left(ab-bc\right)}{2\left(b-c\right)^2+2\left(ab-ac\right)}=\frac{2\left(a-c\right)^2+2b\left(a-c\right)}{2\left(b-c\right)^2+2a\left(b-c\right)}=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}\)

\(=\frac{a-c}{b-c}\) (đpcm)