Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
I have a crazy idea
Xem chi tiết
Ngo Tung Lam
8 tháng 9 2017 lúc 14:54

Ta có :

1/n - 1/n + k

=  n + k - n / n . ( n + k ) 

= k / n . ( n + k )

To Kill A Mockingbird
8 tháng 9 2017 lúc 14:49

Ta có    \(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\cdot\left(n+k\right)}-\frac{n}{n\cdot\left(n+k\right)}=\frac{k}{n\cdot\left(n+k\right)}\)      (dpcm)

Minh
Xem chi tiết
KAl(SO4)2·12H2O
2 tháng 11 2019 lúc 15:34

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(A=1-\frac{1}{n+1}\)

Khách vãng lai đã xóa
Hoàng Thanh Huyền
2 tháng 11 2019 lúc 15:35

a) Ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

           \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)

           \(A=1-\frac{1}{n+1}\)

           \(A=\frac{n+1}{n+1}-\frac{1}{n+1}\)

           \(A=\frac{n}{n+1}\)

Học tốt nha^^

Khách vãng lai đã xóa
Kiệt Nguyễn
2 tháng 11 2019 lúc 19:25

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\)

\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2B=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow B=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)

Khách vãng lai đã xóa
Hyu Hinata
Xem chi tiết
Minh Triều
1 tháng 10 2015 lúc 17:01

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

=> điều phải chứng minh

Nguyễn Ngọc Quý
1 tháng 10 2015 lúc 17:03

\(\frac{k}{n\left(n+k\right)}=\frac{1}{n+k}\)

Vì n(n+k) chia hết cho cả n và n  +  k nên ta lấy n(n+k) là mẫu chung

\(\frac{1}{n}=\frac{1.\left(n+k\right)}{n.\left(n+k\right)}=\frac{n+k}{n\left(n+k\right)}\) ; \(\frac{1}{n+k}=\frac{1.n}{n\left(n+k\right)}=\frac{n}{n\left(n+k\right)}\) (nhân cả tử phân số này cho phân số kia)

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k+n-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

Feliks Zemdegs
1 tháng 10 2015 lúc 17:04

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n+k}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

\(=>đpcm\)

ghrththth
Xem chi tiết
Nguyễn Võ Thảo Vy
9 tháng 12 2017 lúc 20:10

B=1/2.1.2-1/2.2.3+1/2.2.3-1/2.3.4+...+1/2n(n+1)-1/2(n+1)(n+2)

B=1/2[(1/1.2+1/2.3+...+1/n(n+1))-(1/2.3+1/3.4+...+1/(n+1)(n+2))]

Tới đây bạn tự làm tiếp nha, tương tự như bài 1/1.2+1/2.3+..+1/n(n+1) á bạn.Cái này bạn ghi ra bạn sẽ hiểu, mình viết hơi bị lủng củng.

Phương Trình Hai Ẩn
Xem chi tiết
Nguyễn Ngọc Thuỳ Vy
Xem chi tiết
Đinh Đức Hùng
13 tháng 2 2016 lúc 15:36

Chứng tỏ rằng:
         $\frac{k}{n.(n + k)}$ = $\frac{1}{n}$ - $\frac{1}{n + k}

 

Nguyễn Ngọc Minh Long
Xem chi tiết
Ngọc Duyên Trần Thị
29 tháng 10 2016 lúc 0:57

chỗ nào không cứ hỏi mình nhébanhqua

Hoán vị, chỉnh hợp, tổ hợp

Susanna
Xem chi tiết
Nguyễn Trang A1
24 tháng 3 2016 lúc 21:33

Ta có :

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n.\left(n+k\right)}-\frac{n}{n.\left(n+k\right)}=\frac{n+k-n}{n.\left(n+k\right)}=\frac{k}{n.\left(n+k\right)}\)

Vậy \(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n.\left(n+k\right)}\)

lê dạ quynh
24 tháng 3 2016 lúc 21:32

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)

Nguyễn Đăng Diện
24 tháng 3 2016 lúc 21:32

\(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{n+k-n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\) ( ĐPCM)

Nguyễn Đức Kiên
Xem chi tiết