Cho x,y,z thuộc N*;P=5x/y+5y/z+5y/x+5z/y.
Chứng tỏ P lớn hơn hoặc bằng 20
cho x,y,z thuộc Z; A= x/x+y+z + y/x+y+z + z/y+z+t + t/x+y+t
chứng minh A không thuộc N
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
cho x, y, z thuộc n
cmr x/x+y + y/y+z + z/z+x >= 1
cho x, y, z thuộc n
cmr x/x+y + y/y+z + z/z+x >= 1
cho x, y, z thuộc n
cmr x/x+y + y/y+z + z/z+x >= 1
a) Tìm các giá trị n thuộc N để A=2n+5/3n+1 có giá trị là số tự nhiên.
b) Cho x,y,z thuộc N*. Chứng minh rằng A=x/x y + y/y+z + z/z+x có giá trị là một số không thuộc tập hợp số nguyên.
a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)
<=> 3(2n+5) chia hết cho (3n+1)
<=>(6n+15) chia hết cho (3n+1)
<=> (6n + 2 +13) chia hết cho (3n+1)
<=> 13 chia hết cho (3n+1)
=> (3n+1) thuộc Ư(13)
Vì n thuộc N
=> (3n+1) = 1,13
=> n = 0 hoặc 4
b)Trong phần này ta sẽ áp dung 1 tính chất sau:
a/b < (a+m)/(b+m) với a<b
Ta thấy :
x/(x+y) > x/(x+y+z)
y/(y+z) > y/(x+y+z)
z/(z+x) > z/(x+y+z)
=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)
=> A>1
Ta thấy :
x/x+y < (x+z)/(x+y+z)
y/y+z < (y+x)/(x+y+z)
z/z+x < (z+y)/(x+y+z)
=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)
=>A< 2(x+y+z)/(x+y+z)
=> A<2
=>1<A<2
=> A ko phải là số nguyên(đpcm)
1.Tìm x, y, z thuộc z biết :
a. x/6 = y/4 = -1/3 = -3/z
b. -6/30 = x/-20 = 3/y = z/5
2.cho A = 3/n+2 (n thuộc x, n khác 2)
B = -5/n-1 (n thuộc z, n khác 1)
Cho x,y,z thuộc N*. Chứng minh rằng (x-y)(y-z)(z-x) chia hết cho 12.
Cho các số x, y, z,t thỏa mãn:
y+z+t-n^x/x=z+t+x-n^y/y=t+x+z-n^z/z=x+y+z-n^t/t ( n thuộc N, x+y+z+t=2018). Tinh B=x+2y+3z+t
cho x,y,z thuộc N* và
A=x/x+y+y/y+z+z/z+x. chứng minh rằng giá trị của A không là số nguyên
Lời giải:
Do $x,y,z>0$ nên:
$A> \frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1(*)$
Mặt khác:
$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z>0$
$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}(1)$
Hoàn toàn tương tự ta có:
$\frac{y}{y+z}< \frac{y+x}{y+z+x}(2)$
$\frac{z}{z+x}< \frac{z+y}{z+x+y}(3)$
Lấy $(1)+(2)+(3)$ ta thu được: $A< \frac{2(x+y+z)}{x+y+z}=2(**)$
Từ $(*); (**)\Rightarrow 1< A< 2$ nên $A$ không là số nguyên.
Cho x,y,z thuộc N* và A=x/x+y + y/y+z + z/z+x