Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Văn Dũng
Xem chi tiết
Trần Nghiên Hy
Xem chi tiết
Kim Yen Pham
9 tháng 6 2018 lúc 8:44

ta có\(\sqrt{625}\)=25

\(\sqrt{576}\)=24

\(\Rightarrow\)24-1/\(\sqrt{6}\)+1

\(\Rightarrow\)24+-1/\(\sqrt{6}\)

\(\Rightarrow\)25-1/\(\sqrt{6}\)

\(\Rightarrow\)A<B

Ngọc Nguyễn Minh
Xem chi tiết
an
3 tháng 1 2016 lúc 18:15

√625=25

Ta co √576=24

=> 24-1/√6+1

=> 24+-1/√6+1

=> 25+-1/√6

=> 25-1/√6

=> A<B

Ngô Thị Hồng Ánh
3 tháng 1 2016 lúc 16:46

Ta có : căn bậc hai của 625 =25 

           căn bậc hai của 576 =24 cộng 1 =25

→ căn bậc hai của 625 = căn bậc hai của 576 cộng 1 (1)

          5< 6 → căn bậc 2 của 5 < của 6 → 1/ căn bậc 2 của 5 > 1/ căn bậc 2 của 6 (2)

Từ (1) và (2) → A< B

Nhớ tick nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

LẠI VŨ MINH
1 tháng 2 2017 lúc 9:16

bạn cứ tinh bình thường ra là xong

\(A=\sqrt{625}-\frac{1}{\sqrt{5}}=24.5527864\)                              \(B=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24.59175\)

nhìn cũng biết B>A

nhơ tích đúng cho mình nha !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Hương Lương
Xem chi tiết
Pham Van Hung
29 tháng 10 2018 lúc 21:32

\(A=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\)

\(B=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\)

\(A< B\)

Nguyễn Duy Long
Xem chi tiết
Nguyễn Duy Long
23 tháng 7 2017 lúc 8:29

trả lời nhanh lên

Rau
24 tháng 7 2017 lúc 13:25

2. BÌnh phương lên nhỉ :v

Nguyễn Thiên Kim
25 tháng 7 2017 lúc 15:42

2. ĐK:  \(0\le x\le\frac{625}{4}\)

Đặt  \(x=\sqrt{\frac{25}{2}+\sqrt{\frac{625}{4}-n}}+\sqrt{\frac{25}{2}-\sqrt{\frac{625}{4}-n}}\)

Ta tính được  \(x^2=25+2\sqrt{n}\le25+2.\frac{25}{2}=50\)

Hiển nhiên  \(x^2\ge25\)  và là số chính phương nên  \(x^2=25+2\sqrt{n}\)  nhận các giá trị 25; 36; 49

Tìm được n = 0 và n = 144

Rùa Con Chậm Chạp
Xem chi tiết
Trần Thanh Phương
4 tháng 11 2018 lúc 16:02

Bài 2 :

Giả sử \(a=\sqrt{3}\)là số hữu tỉ

Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )

Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)

Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)

\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)

=> m có dạng \(3k\)

Thay m vào (*) ta có : \(9k^2=3n^2\)

\(\Leftrightarrow3k^2=n^2\)

\(\Leftrightarrow n=\sqrt{3}k\)

Vì k là số nguyên => n không là số nguyên

=> điều giả sử là sai

=> \(\sqrt{3}\)là số vô tỉ

Le Thao Vy
Xem chi tiết
Hoài Dung
Xem chi tiết
Linh Nguyen
Xem chi tiết
Hồng Phúc
19 tháng 10 2020 lúc 23:37

a, \(\left\{{}\begin{matrix}2x-1\ne0\\\frac{x^2}{2x-1}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\2x-1>0\end{matrix}\right.\Leftrightarrow x>\frac{1}{2}\)

b, \(\frac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\frac{1}{27}}=\frac{\sqrt[3]{5^3.5}}{\sqrt[3]{5}}-\sqrt[3]{\left(-6\right)^3}.\sqrt[3]{\left(\frac{1}{3}\right)^3}\)

\(=\frac{5\sqrt[3]{5}}{\sqrt[3]{5}}+6.\frac{1}{3}=5+2=7\)

Khách vãng lai đã xóa