So sánh A= \(\frac{79^{2018}+1}{79^{2019}+1};B=\frac{79^{2019}-2021}{79^{2020}-2011}\)
Không qui đồng mau . Hãy so sánh
78/78 và 79/78
35/145 và 35/175
2017/2018 và 2018/2019
78/78 < 79/78
35/145 > 35/175
2017/2018 < 2018/2019
K mk nhé
\(\frac{78}{78}< \frac{79}{78}\)
\(\frac{35}{145}>\frac{35}{175}\)
\(\frac{2017}{2018}< \frac{2018}{2019}\)
Hok tốt!
Ko chắc câu cuối nha~!
Bài toán : So sánh A và B
\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)
\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)
Bài toán : So sánh A và B
\(A=\frac{2018^{100}}{1+2018+2018^2+...+2018^{100}}\)
+) Ta có \(\frac{1}{A}=\frac{1+2018+2018^2+...+2018^{100}}{2018^{100}}\)
\(=\frac{1}{2018^{100}}+\frac{2018}{2018^{100}}+\frac{2018^2}{2018^{100}}+...+\frac{2018^{100}}{2018^{100}}\)
\(=\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1\)
\(B=\frac{2019^{100}}{1+2019+2019^2+...+2019^{100}}\)
+) Ta có \(\frac{1}{B}=\frac{1+2019+2019^2+...+2019^{100}}{2019^{100}}\)
\(=\frac{1}{2019^{100}}+\frac{2019}{2019^{100}}+\frac{2019^2}{2019^{100}}+...+\frac{2019^{100}}{2019^{100}}\)
\(=\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)
+) \(\frac{1}{2018^{100}}>\frac{1}{2019^{100}}\)
\(\frac{1}{2018^{99}}>\frac{1}{2019^{99}}\)
.....................................
\(1=1\)
\(\Rightarrow\frac{1}{2018^{100}}+\frac{1}{2018^{99}}+\frac{1}{2018^{98}}+...+1>\frac{1}{2019^{100}}+\frac{1}{2019^{99}}+\frac{1}{2019^{98}}+...+1\)
\(\Rightarrow\frac{1}{A}>\frac{1}{B}\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
So sánh A và B:
\(A=\frac{2018^2}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)
B= 1/1.2+1/2.3+...+1/2019.2020
B=1/1-1/2+1/2-1/3+...+1/2019-1/2020
B=1-1/2020=2020/2020-1/2020=2019/2020
Cho A=\(\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
B= \(\frac{1}{1.2}+\frac{1}{3.4}+.....+\frac{1}{2019.2020}\)
So sánh A và B
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\)
Với : \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\)
Và : \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\)
\(B=1-\frac{1}{2020}< 1< A\)
Cho A= \(\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
và B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{2019.2010}\)
So sánh A và B
Cho \(A=\frac{2^{2018}}{2^{2018}+3^{2019}}+\frac{3^{2019}}{3^{2019}+5^{2020}}+\frac{5^{2020}}{5^{2020}+2^{2018}}\)
\(B=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2019\cdot2020}\)
So sánh A và B
Mình rất cần vào sáng mai
đặt 22018 = a ; 32019 = b ; 52020 = c
Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)
\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)
\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)
\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)
\(B< \frac{3}{4}\)
\(\Rightarrow A>1>\frac{3}{4}>B\)
Mình chỉ biết cách tính B thôi, đây nhé:
B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)
B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)
so sánh A=2018^2019 -1/2018^2019+1 và B = 2018^2019/2018^2019+2
Ta có: B = (2018 + 2019)/(2019 + 2020) = (2018 + 2019)/4039 = 2018/4039 + 2019/4039
Ta thấy : 2018/2019 > 2018/4039
2019/2020 > 2019/4039
=> 2018/2019 + 2019/2020 > 2018/4039 > 2019/4039
=> 2018/2019 + 2019/2020 > (2018 + 2019)/(2019 + 2020)
=> A > B
Cho A=\(\frac{2018^{2018}}{2019^{2019}}\) Và B=\(\frac{2018^{2018}+2018}{2019^{2019}+2019}\) So sánh A và B
bài 1: so sánh hai phân số sau bằng cách thuận tiện nhất:
a) \(\frac{78}{79}và\frac{79}{78}\) b) \(\frac{135}{135}và\frac{136}{137}\)
bài dễ thế này mà ko biết mình học từ năm lớp 4 rồi
78/79<1 ma 79/78>1
Vay 78/79<79/78
b]135/135=1 ma 136/137<1
Vay 135/135>136/137
MÌNH CHẮC CHẮN LUN LỚP 4 MÌNH CÒN HỌC KHÓ HƠN NHIỀU LẦN NHƯNG MÌNH VẪN LÀM ĐƯỢC