Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn bảo my
Xem chi tiết
Trần baka
12 tháng 3 2019 lúc 23:43

Lấy A - B ta được

\(A-B=\frac{-2016}{10^{2016}}-\frac{-2017}{10^{2016}}+\frac{-2017}{10^{2017}}+\frac{2016}{10^{2017}}\)

              \(=\frac{1}{10^{2016}}-\frac{1}{10^{2017}}>0\)

Nên A > B

Vũ Quốc Việt
Xem chi tiết
Nguyễn Đức Hiền
Xem chi tiết
Nguyễn Vĩnh Tường
15 tháng 3 2018 lúc 20:13

Anh hiền àaaaaaaaaaaaaaaaaaaaaaaaaa

Nguyễn Vĩnh Tường
15 tháng 3 2018 lúc 20:13

Tường đây

Phùng Minh Quân
15 tháng 3 2018 lúc 20:18

Ta có công thức : 

\(\frac{a}{b}>\frac{a+c}{b+c}\) \(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(B=\frac{10^{2018}+1}{10^{2017}+1}>\frac{10^{2018}+1+9}{10^{2018}+1+9}=\frac{10^{2018}+10}{10^{2018}+10}=\frac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\frac{10^{2017}+1}{10^{2016}+1}=A\)

\(\Rightarrow\)\(B>A\) hay \(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

Quách Trung Kiên
Xem chi tiết
Phạm Hồ Hữu Trí
Xem chi tiết
Thanh
Xem chi tiết
Nguyễn Đức Huy
30 tháng 9 2016 lúc 9:15

a < b vì 2016< 201710

câu này rất dễ,chỉ càn lí luận thôi

Nguyễn Bá Hùng
Xem chi tiết
Nguyễn Văn Hưởng
7 tháng 1 2018 lúc 17:35

Ta có :  \(A=\frac{10^{2016}+1}{10^{2017}+1}\) 

Suy ra  \(10A=\frac{10^{2017}+10}{10^{2017}+1}\) 

Suy ra  \(10A=1+\frac{9}{10^{2017}+1}\) 

Ta lại có : \(B=\frac{10^{2017}+1}{10^{2018}+1}\) 

Suy ra : \(10B=\frac{10^{2018}+10}{10^{2018}+1}\) 

Suy ra : \(10B=1+\frac{9}{10^{2018}+1}\) 

Vì  \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\) 

Nên  \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\) 

Suy ra \(10A>10B\) 

Suy ra \(A>B\)

ST
7 tháng 1 2018 lúc 17:26

\(B< \frac{10^{2017}+1+9}{10^{2018}+1+9}=\frac{10^{2017}+10}{10^{2018}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2016}+1}{10^{2017}+1}=A\)

vậy A > B

thungan2102006
Xem chi tiết
Lê Quỳnh Trang
9 tháng 5 2018 lúc 22:19

\(+)A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(10A=\frac{10^{2017}+20180}{10^{2017}+2018}=1+\frac{18162}{10^{2017}+2018}\left(1\right)\)

\(+)10B=\frac{10^{2018}+20180}{10^{2018}+2018}=1+\frac{18162}{10^{2018}+2018}\left(2\right)\)

Từ (1),(2)=> \(\frac{18162}{10^{2017}+2018} >\frac{18162}{10^{2018}+2018}\)

=> 10A>10B

=>A>B

Lan Nguyễn Thị
9 tháng 5 2018 lúc 22:22

k đúng cho mình đi, mình giải cho.

Nghi Ngo
Xem chi tiết
alibaba nguyễn
24 tháng 4 2017 lúc 18:33

a/ Ta có

\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)

\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)

\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)

\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

Thế lại bài toán ta được:

\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)

\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)

alibaba nguyễn
24 tháng 4 2017 lúc 18:37

b/ Ta có: 

A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)

\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)

Vậy A < B

Nghi Ngo
24 tháng 4 2017 lúc 19:08

cảm ơn bạn