So sánh A và B
\(A=\frac{10^{2011}+1}{10^{2012}+1};B=\frac{10^{2012}+1}{10^{2013}+1}\)
So sánh A và B,biết:
A=\(\frac{10^{2010}+1}{10^{2011}+1}\) và B=\(\frac{10^{2011}+1}{10^{2012}+1}\)
Vì \(\frac{10^{2011}+1}{10^{2012}+1}< 1\)
=> \(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}=\frac{10^{2011}+10}{10^{2012}+10}=\frac{10\left(10^{2010}+1\right)}{10\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy A > B
So sánh A=\(\frac{10^{2011}+1}{10^{2012}+1}\)và B=\(\frac{10^{2012}+1}{10^{2013}+1}\)
\(B< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)
Vậy A > B
Áp dụng bất đẳng thức :
\(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có :
\(B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)
\(\Leftrightarrow B< A\)
So sánh:
a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)
b) \(\frac{2011}{2012}+\frac{2012}{2013}\)và \(\frac{2011+2012}{2012+2013}\)
a) \(\frac{2^{10}+1}{2^{10}-1}\)và \(\frac{2^{10}-1}{2^{10}-3}\)
Ta có chính chất phân số trung gian là \(\frac{2^{10}+1}{2^{10}-3}\)
\(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}\) ; \(\frac{2^{10}-1}{2^{10}-3}< \frac{2^{10}+1}{2^{10}-3}\)
Vì \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}+1}{2^{10}-3}>\frac{2^{10}-1}{2^{10}-3}\)
Nên \(\frac{2^{10}+1}{2^{10}-1}>\frac{2^{10}-1}{2^{10}-3}\)
b) \(A=\frac{2011}{2012}+\frac{2012}{2013}\)và \(B=\frac{2011+2012}{2012+2013}\)
Ta có : \(A=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}=B\)
Vậy A > B
Có gì sai cho sorry
a,
\(\frac{2^{10}+1}{2^{10}-1}=1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}=\frac{2^{10}-1}{2^{10}-3}\)
b,
\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}=\frac{2011+2012}{2012+2013}\)
So sánh A và B biết:
A= \(\frac{10^{2011}+1}{10^{2012}+1}\); B= \(\frac{10^{2012}+1}{10^{2013}+1}\)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
\(=>B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}\)
\(< \frac{10^{2012}+10}{10^{2013}+10}\)
\(< \frac{10.\left(10^{2011}+1\right)}{10.\left(10^{2012}+1\right)}\)
\(< \frac{10^{2011}+1}{10^{2012}+1}=A\)
=> B < A
Ủng hộ mk nha ^_-
So sánh A và B, biết A= 102010+1/102011 +1 và B= 102011+1/102012+1
Cho C=\(10^{2010}+\frac{1}{10^{2010}}\)
Xét \(A_1=10^{2010}+\frac{1}{10^{2011}}\)và \(B^{ }_1=10^{2011}+\frac{1}{10^{2012}}\)
Ta có \(A_1-C=10^{2010}+\frac{1}{10^{2010}}-10^{2010}-\frac{1}{10^{2010}}\)
\(A_1-C=10.\left(\frac{1}{10^{2011}}-\frac{1}{10^{2010}}\right)\)
Giair tượng tự ta được \(B_1-C=10^{2010}.\left(9+\frac{1}{10^{2012}}-\frac{1}{10^{2010}}\right)\)
Ta thấy \(\frac{1}{10^{2012}}-\frac{1}{10^{2010}}
ko quy đồng so sánh: A=\(\frac{-9}{10^{2012}}\)+\(\frac{-19}{10^{2011}}\)VÀ B=\(\frac{-19}{10^{2012}}+\frac{-9}{10^{2011}}\)
Có \(\hept{\begin{cases}A=\frac{-9}{10^{2012}}+\frac{-19}{10^{2011}}\\B=\frac{-19}{10^{2012}}+\frac{-9}{10^{2011}}\end{cases}}\)
\(\Rightarrow\)A-B=\(\frac{10}{10^{2011}}-\frac{10}{10^{2012}}=\frac{1}{10^{2010}}-\frac{1}{10^{2011}}>0\)
\(\Rightarrow A>B\)
b1: So sánh:
a, A=\(\frac{10^{2010}+1}{10^{2011}+1}\) và B=\(\frac{10^{2011}+1}{10^{2012}+1}\)
b,\(\left(\frac{-1}{2}\right)^{11}\) và \(\left(\frac{-1}{2}\right)^{13}\)
a) Ta có :
\(A=\frac{10^{2010}+1}{10^{2011}+1}\)
\(\Rightarrow10A=\frac{10^{2011}+10}{10^{2011}+1}=\frac{\left(10^{2011}+1\right)+9}{10^{2011}+1}=1+\frac{9}{10^{2011}+1}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}\)
\(\Rightarrow10B=\frac{10^{2012}+10}{10^{2012}+1}=\frac{\left(10^{2012}+1\right)+9}{10^{2012}+1}=1+\frac{9}{10^{2012}+1}\)
Vì \(\frac{9}{10^{2011}+1}>\frac{9}{10^{2012}+1}\)nên \(10A>10B\)
\(\Rightarrow A>B\)
Vậy : \(A>B\)
b) Ta có :
\(\left(\frac{-1}{2}\right)^{11}=\frac{-1^{11}}{2^{11}}=\frac{-1}{2^{11}}\)
\(\left(\frac{-1}{2}\right)^{13}=\frac{-1^{13}}{2^{13}}=\frac{-1}{2^{13}}\)
Vì \(\frac{-1}{2^{11}}>\frac{-1}{2^{13}}\)nên \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)
Vậy : \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+10}{10^{2012}+10}\)
\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10\cdot\left(10^{2010}+1\right)}{10\cdot\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)
Vậy : B < A
So sánh:
a, \(A=\frac{20^{10}+1}{20^{10}-1}\) và \(B=\frac{20^{10}-1}{20^{10}-3}\)
b, \(A=\frac{2011}{2012}+\frac{2012}{2013}\) và \(B=\frac{2011+2012}{2012+2013}\)
Ai làm giúp mình cả 2 câu này mình tick cho!
Bái 1 : So sánh :
a, A=\(\frac{10^{2010}+1}{10^{2011}+1}\)và B=\(\frac{10^{2011}+1}{10^{2012}+1}\)
b, \(\left(\frac{-1}{2}\right)^{11}\)và\(\left(\frac{-1}{2}\right)^{13}\)
NHANH+ĐÚNG CHO 3 TIK