Cho \(A=\frac{10^{11}-1}{10^{12}-1}\) \(;B=\frac{10^{10}+1}{10^{11}+1}\) . So sánh \(A\) và \(B\)
Cho A=\(\frac{10^{11}-1}{10^{12}-1}\); B=\(\frac{10^{11}+1}{10^{12}+1}\).so sánh A và B
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}\) theo công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
\(A< \frac{10^{11}+10}{10^{12}+10}=\frac{10^{10}\left(10+1\right)}{10^{11}\left(10+1\right)}=\frac{10^{10}}{10^{11}}\)
\(\Rightarrow\frac{10^{10}}{10^{11}}=\frac{10^{10}\cdot10^{12}}{10^{11}\cdot10^{12}}=\frac{10^{22}}{10^{23}}\)
\(\Leftrightarrow A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}\)
Lại áp dụng công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)
\(A< \frac{10^{10}}{10^{11}}=\frac{10^{11}}{10^{12}}< \frac{10^{11}+1}{10^{12}+1}=B\)
\(\Leftrightarrow A< B\)
Hoặc \(A< \frac{10^{11}-1+2}{10^{12}-1+2}=\frac{10^{12}+1}{10^{12}+1}\)
..... (EZ)
Cho: \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}\)
=> \(A< B\)
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow10A=\frac{10\left(10^{11}-1\right)}{\left(10^{12}-1\right)}=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\left(1\right)\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{9}{10^{11}+1}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A< B\)
Nếu có 1 phân số a/b < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (10^11 -1)+11/(10^12 -1)+10
A < 10^11+10/10^12+10
A < 10(10^10+1)/10(10^11+1)
A < 10(10^10+1)/10(10^11+1)
A < 10^10+1/10^11+1
Vậy A < B
Cho A = \(\frac{10^{11}-1}{10^{12}-1}\)và B = \(\frac{10^{11}+1}{10^{12}+1}\)
So sán A và B
ta có: \(A=\frac{10^{11}-1}{10^{12}-1}\Rightarrow10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}.\)
\(B=\frac{10^{11}+1}{10^{12}+1}\Rightarrow10B=\frac{10^{12}+10}{10^{12}+1}=\frac{10^{12}+1+9}{10^{12}+1}=1+\frac{9}{10^{12}+1}\)
\(\Rightarrow1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{12}+1}\Rightarrow10A< 10B\Rightarrow A< B\)
10A=1012-10/1012-1
=1-9/1012-1
10B=1012+10/1012+1
=1+9/1012+1
suy ra A<B
cho A=\(\frac{10^{11}-1}{10^{12}-1}\);B=\(\frac{10^{10}+1}{10^{11}+1}\).So sánh A và B
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
\(\Rightarrow A< B\)
bài này ko cần cách làm tớ chỉ ra kết quả thui
1)Cho A=\(\frac{10^{11}-1}{10^{12}-1}\);B=\(\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
Ta luôn có nếu a>0; b>0 thì \(\frac{a}{b}< \frac{a+m}{b+m}\left(m\in N\right)\)
Áp dụng vào bài toán ta thấy 1011-1 > 0 và 1012-1 > 0 nên
\(A=\frac{10^{11}-1}{10^{12}-1}< \frac{10^{11}-1+11}{10^{12}-1+11}=\frac{10^{11}+10}{10^{12}+10}=\frac{10.\left(10^{10}+1\right)}{10.\left(10^{11}+1\right)}=\frac{10^{10}+1}{10^{11}+1}=B\)
Vậy A < B
Xin lỗi bn nhé bài toán phụ phía trên đang còn 1 đk nữa là a<b
\(10A=\frac{10^{12}-10}{10^{12}-1}\); \(10B=\frac{10^{11}+10}{10^{11}+1}\)
=> \(10A=\frac{\left(10^{12}-1\right)-9}{10^{12}-1}\); \(10B=\frac{\left(10^{11}+1\right)+9}{10^{11}+1}\)
=> \(10A=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\); \(10B=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)
=> \(10A=1-\frac{9}{10^{12}-1}\); \(10B=1+\frac{9}{10^{11}+1}\)
Ta có: \(10A=1-\frac{9}{10^{12}-1}< 1\); \(10B=1+\frac{9}{10^{11}+1}>1\)
=> \(10A< 10B\)
=> \(A< B\)
Cho A = \(\frac{10^{11}-1}{10^{12}-1}\); B = \(\frac{10^{10}+1}{10^{11}+1}\). So sánh A với B
để so sánh A và B ta so sánh
\(\frac{10^{11}-1}{10^{12}-1}\)và \(\frac{10^{10}+1}{10^{11}+1}\)
Ta có \(10^{11}-1< 10^{11}+1\)
và \(10^{12}-1>10^{11}+1\)
=> A<B
Cho A=\(\frac{10^{11}-1}{10^{12}-1}\); B=\(\frac{10^{10}+1}{10^{11}+1}\)hãy so sánh A và B.
\(10A=\frac{10^{12}-1-9}{10^{12}-1}=\frac{10^{12}-9}{10^{12}}-1\)
\(10B=\frac{10^{11}+1+9}{10^{11}+1}=\frac{10^{11}+9}{10^{11}}+1\)
ta có: \(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}\)\(=1-\frac{9}{10^{12}-1}< 1\)
ta có: \(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}\)\(=1+\frac{9}{10^{11}+1}>1\)
\(\Rightarrow10.A< 10.B\)
\(\Rightarrow A< B\)
Ta có:
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Rightarrow10.A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
B= 1010+1/1011+1
\(\Rightarrow10.B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
VÌ 10.B>1 và 10.A < 1
=> 10.B> 10.A
=>B>A
Vậy A<B
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
( xét A và B so sánh với 1 nhé)
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
Có : 10A = 10^12-10/10^12-1 = 1 - 9/10^12-1 < 1
10B = 10^11+10/10^11+1 = 1 + 9/10^11+1 > 1
=> 10A < 10B
=> A < B
Tk mk nha
Cho A = \(\frac{10^{11}-1}{10^{12}-1}\); B = \(\frac{10^{10}+1}{10^{11}+1}\)
Hãy so sánh A và B
A=1011-1/1012-1<1
=>A=1011-1/1012-1<1011+1.10/1012+1.10
=1011+10/1012+10
=10(1010+1)/10(1011+1)
=1010+1/1011+1=B
=>A<B