cho A=\(\frac{2018^{37}+37^{2018}+1}{2018^{38}}\); B=\(\frac{2018^{38}+37^{2018}+2}{2018^{39}}\). So sánh A và B
27(37-2018)-37(27-2018)
ai nhanh minh tick cho nhé !!!
Nhầm :
\(\left(27.37\right)+\left(37.2018-27.2018\right)\)
\(=0+10.2018\)
\(=0+20180\)
\(=20180\)
cách trình bày nữa nha các bạn, bài này là dạng tính nhanh
\(B=\frac{18}{37}-\frac{8}{2017}+\frac{19}{37}-1\frac{2009}{2017}+\frac{2017}{2018}\)
\(B=\frac{18}{37}-\frac{8}{2017}+\frac{19}{37}-1\frac{2009}{2017}+\frac{2017}{2018}\)
\(B=\left(\frac{18}{37}+\frac{19}{37}\right)-\left(\frac{8}{2017}+1\frac{2009}{2017}\right)+\frac{2017}{2018}\)
\(B=1-\left(\frac{8}{2017}+\frac{4026}{2017}\right)+\frac{2017}{2018}\)
\(B=1-2+\frac{2017}{2018}\)
\(B=-1+\frac{2017}{2018}=\frac{-2018}{2018}+\frac{2017}{2018}\)
\(B=\frac{-1}{2018}\)
CHÚC BN HỌC TỐT!!!!!!
mk nha!!
Giải phương trình: \(\frac{\left(2017-x\right)^2+\left(2017-x\right)\left(x-2018\right)+\left(x-2018^2\right)}{\left(2017-x\right)^2-\left(2107-x\right)\left(x-2018\right)+\left(x-2018\right)^2}=\frac{13}{37}\)
Đây là đề thi hoc sinh giỏi lớp 9 cấp tỉnh Phú yên năm 2018-2019
Dễ thấy \(x=2017\)không là nghiệm của phương trình.
Ta có:
\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)
Đặt \(\frac{x-2018}{2017-x}=a\)
\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)
\(\Leftrightarrow24a^2+50a+24=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)
tính nhanh
\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)
\(\frac{7}{13}\cdot\frac{5}{14}\cdot\frac{39}{15}\)
\(2\frac{3}{7}\cdot\frac{1}{2}-\frac{1}{2}\cdot\frac{3}{7}+\frac{1}{3}\)
\(\frac{9}{5}:\frac{17}{15}+\frac{8}{5}:\frac{17}{15}\)
\(\frac{2017}{2018}\cdot\frac{1}{2019}+\frac{2017}{2018}:\frac{2019}{2018}+\frac{1}{2018}\)
\(\frac{637\cdot527-189}{526\cdot637+448}\)
\(\frac{4}{5\cdot7}+\frac{4}{7\cdot9}+\frac{4}{9\cdot11}+...+\frac{4}{23\cdot25}\)
dấu . là dấu nhân nha mọi người
\(\frac{19}{37}+\left(1-\frac{19}{37}\right)\)
\(=\frac{19}{37}+1-\frac{19}{37}\)
\(=\left(\frac{19}{37}-\frac{19}{37}\right)+1\)
\(=0+1=1\)
cho a,b,c là 3 cạnh tam giác
chứng minh
\(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(a+c-b\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
Trước tiên ta chứng minh bổ đề: Với x, y dương thì ta có:
\(\frac{1}{x^n}+\frac{1}{y^n}\ge\frac{2^{n+1}}{\left(x+y\right)^n}\)
Với n = 1 thì nó đúng.
Giả sử nó đúng đến \(n=k\)hay \(\frac{1}{x^k}+\frac{1}{y^k}\ge\frac{2^{k+1}}{\left(x+y\right)^k}\left(1\right)\)
Ta chứng minh nó đúng đến \(n=k+1\)hay \(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\frac{2^{k+2}}{\left(x+y\right)^{k+1}}\left(2\right)\)
Từ (1) và (2) cái ta cần chứng minh trở thành:
\(\frac{1}{x^{k+1}}+\frac{1}{y^{k+1}}\ge\left(\frac{1}{x^k}+\frac{1}{y^k}\right)\frac{2}{\left(x+y\right)}\)
\(\Leftrightarrow\left(y-x\right)\left(y^{k+1}-x^{k+1}\right)\ge0\)(đúng)
Vậy ta có ĐPCM.
Áp dụng và bài toán ta được
\(2\left(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\right)\ge\frac{2^{2019}}{2^{2018}.a^{2018}}+\frac{2^{2019}}{2^{2018}.b^{2018}}+\frac{2^{2019}}{2^{2018}.c^{2018}}\)
\(\Leftrightarrow\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}+\frac{1}{\left(c+a-b\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
cho a,b,c là 3 cạnh tam giác
chứng minh
\(\frac{1}{\left(a+b-c\right)^{2018}}+\frac{1}{\left(a+c-b\right)^{2018}}+\frac{1}{\left(b+c-a\right)^{2018}}\ge\frac{1}{a^{2018}}+\frac{1}{b^{2018}}+\frac{1}{c^{2018}}\)
Cho \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{b+d+a}=\frac{d}{a+b+c}\)
Tính \(A=\frac{a^{2018}}{b^{2018}}+\frac{b^{2018}}{c^{2018}}+\frac{c^{2018}}{d^{2018}}+\frac{d^{2018}}{a^{2018}}\)
Cho\(a+b+c=2018\) và\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\)CMR: \(\orbr{\begin{cases}x=2018\\y=2018\end{cases}}\)hoặc z=2018
Sửa đề cmr a=2018 hoặc b=2018 hoặc c=2018, đây là toán 8
\(a+b+c=2018\Rightarrow\frac{1}{a+b+c}=\frac{1}{2018}\)
=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
<=>\(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-ab\left(a+b\right)\)
<=>\(\left(a+b\right)\left(ca+bc+c^2\right)+ab\left(a+b\right)=0\)
<=>\(\left(a+b\right)\left(ca+bc+c^2+ab\right)=0\)
<=>\(\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
<=>\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
<=>a+b=0 hoặc b+c=0 hoặc c+a=0
Mà a+b+c=2018
=>c=2018 hoặc a=2018 hoặc b=2018 (đpcm)
Cho A=\(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\)
Chứng minh rằng 4.A > (0,1)^6