Chứng tỏ rằng với mọi số nguyên n thì :
A = ( n + 6 ) ( n + 7 ) luôn luôn chia hết cho 2 ;
B = n^2 + n + 3 không chia hết cho 2.
Chứng tỏ với mọi số nguyên n thì A=(n+6).(n+7) luôn chia hết cho 2
với mọi số nguyên n thì (n+6).(n+7) luôn là tích 2 số nguyên liên tiếp mà trong 2 số nguyên liên tiếp luôn tồn tại 1 số chẵn nên suy ra tích 2 số nguyên đó luôn chia hết cho 2
Vậy (n+6).(n+7) chia hết cho 2 với mọi n thuộc Z(đpcm)
Chứng tỏ rằng với mọi số nguyên n thì :
a) \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn chia hết cho 2
b) \(B=n^2+n+3\)không chia hết cho 2 .
a) Với mọi n là số lẻ hoặc số chẵn thì \(A=\left(n+6\right)\left(n+7\right)\) luôn luôn là số chẵn . Do đó \(A⋮2\)với mọi \(n\in Z\)
b) \(B=n\left(n+1\right)+3\)
Vì \(n\left(n+1\right)\)là tích của hai số nguyên liên tiếp nên là số chẵn , do đó \(n\left(n+1\right)⋮2\), nhưng 3 không chia hết cho 2
\(\Rightarrow\)B không chia hết cho 2 với mọi \(n\in Z\)
Nếu n là số chẵn thì (n + 6) chia hết cho 2
=> (n + 6)(n + 7) chia hết cho 2
Nếu n là số lẻ thì (n + 7) chia hết cho 2
=> (n + 6)(n + 7) chia hết cho 2
Vậy với mọi n nguye thì (n + 6)(n + 7) đều chia hết cho 2
a) Do n + 6 và n + 7 là hai số nguyên liên tiếp nên 1 trong 2 số có một số chẵn => tích của chúng luôn chia hết cho 2
b) n2 + n + 3
= n(n + 1) + 3
n và n + 1 là 2 số liên tiếp nên tích của chúng luôn chia hết cho 2, mà 3 không chia hết cho 2, nên:
n2 + n + 3 không chia hết cho 2
tìm các số tự nhiên a và b sao cho a.b=105 và a<b
chứng tỏ rằng với mọi số tự nhiên n thì (n+2017).(n+2018) luôn chia hết cho 2
chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12). (n+7)luôn chia hết cho 3
giúp mình với mình đang gấp!
Chứng minh rằng: Với mọi số nguyên n thì
a, A=(n+6).(n+7) luôn chia hết cho 2
b, B=(n2+n+3) không chia hết cho 2
a. Giả sự n chia hết cho 2 => n+6 chia hết cho 2 => A chia hết cho 2
Giả sư n ko chia hết cho 2 => n + 7 chia hết cho 2 => A chia hết cho 2
b. Giả sử n chia hết cho 2 => n^2 chia hết cho 2 => n^2 + n chia hết cho 2 => B ko chia hết cho 2
Gia sử n ko chia hết cho 2 => n^2 ko chia hết cho 2. => n^2 + n chia hết cho 2 => B ko chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12).(n+7) luôn chia hết cho 3.
a) Chứng tỏ rằng tổng 5 số tự nhiên liên tiếp thì chia hết cho 5
b) Chứng tỏ rằng ( n+2010)+(n+2011) luôn chia hết cho 2 với mọi n là số tự nhiên
chứng tỏ rằng mọi số tự nhiên n thì tích (n+3)(n+6) luôn chia hết cho 2
Chứng tỏ rằng mọi số tự nhiên n thì tích n.(n+5) luôn luôn chia hết cho 2.
Vì n là số tự nhiên
=>n có 2 dạng là 2k và 2k+1
*Xét n=2k=>n.(n+5)=2k.(2k+5) chia hết cho 2
=>n.(n+5) chia hết cho 2
*Xét n=2k+1=>n.(n+5)=(2k+1).(2k+1+5)=(2k+1).(2k+6)=(2k+1).(k+3).2 chia hết cho 2
=>n.(n+5) chia hết cho 2
Vậy mọi số tự nhiên n thì n.(n+5) chia hết cho 2
Chứng tỏ rằng với mọi số tự nhiên n,(n + 7)(n + 8) luôn chia hết cho 2