\(\frac{x}{10}=\frac{y}{20}=\frac{z}{30};2x-z=-100\)
Tìm x, y, z biết:
a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}v\)à x+y=-24
b, \(\frac{x}{7}=\frac{y}{6}=\frac{z}{5}\)và 3z-2y=20
c, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và x+2y-3z=-20
d, \(\frac{x}{2}=\frac{y}{3};\frac{y}{8}=\frac{z}{10}\)và x+y-z=20
e, 3x=2y;\(\frac{y}{6}=\frac{z}{7}\)và x+y-z=30
f, \(\frac{x}{2}=\frac{y}{3}\)và xy= 5400
Mấy bài còn lại tương tự nhé cậu
tìm x,y,z. khi:
\(\frac{-6}{30}=\frac{x}{-20}=\frac{3}{y}=\frac{Z}{5}\)
-6/30=x/-20
=>30x=(-6)(-20)=120
=>x=120:30=4
-6/30=3/y
=>-6y=3.30=90
=>y=90:(-6)=-15
-6/30=z/5
=>30z=-6.5=30
=>z=-1
Tìm x y z biết :\(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-21}\)
Tìm x,y,z biết
\(\frac{x}{30}=\frac{y}{10}=\frac{z}{6}\) và x+y+z=92
Tìm x,y,z biết
\(\frac{X}{30}+\frac{Y}{10}+\frac{Z}{60}\) và x+y+z=92
Theo đề bài ra ta có:
x/30=y/10=z/60=x+y+z/30+10+60=92/100=0,92
=> x/30 = 0,92 => 0,92 × 30 = 27,6
=> y/10 = 0,92 => 0,92 × 10 = 9,2
=> z/60 = 0,92 => 0,92 × 60 = 55,2
Vậy x = 27,6 ; y = 9,2 ; z = 55,2
Tìm x,y,z biết ;và
\(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\)và xyz=22400
áp dụng DSTCBN:
Ta có:
\(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\Leftrightarrow\frac{x-30}{40}=\frac{y-15}{20}=\frac{z-21}{28}\)
\(\Rightarrow\frac{x-30}{10}=\frac{y-15}{5}=\frac{z-21}{7}\)
\(\frac{\Rightarrow x}{10}-\frac{30}{10}=\frac{y}{5}-\frac{15}{5}=\frac{z}{7}-\frac{21}{7}\)
\(\frac{\Rightarrow x}{10}-3=\frac{y}{3}-3=\frac{z}{7}-3\)
\(\frac{\Rightarrow x}{10}=\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{10}=\frac{y}{5}=\frac{z}{7}=t=\hept{\begin{cases}x=10t\\y=5t\\z=7t\end{cases}}\)
\(xyz=22400\Leftrightarrow350t^3=22400\Leftrightarrow t^3=64\Rightarrow t=4\)
\(\Rightarrow\hept{\begin{cases}x=40\\y=20\\z=28\end{cases}}\)
\(\text{Ta có:}\)\(\frac{40}{x-30}=\frac{20}{y-15}=\frac{28}{z-21}\)
\(\Leftrightarrow\frac{x-30}{40}=\frac{y-15}{40}=\frac{z-21}{28}\)
\(\Leftrightarrow\frac{x}{40}-\frac{30}{40}=\frac{y}{40}-\frac{15}{40}=\frac{z}{28}-\frac{21}{28}\)
\(\Leftrightarrow\frac{x}{40}-\frac{3}{4}=\frac{y}{20}-\frac{3}{4}=\frac{z}{28}-\frac{3}{4}\)\
\(\Leftrightarrow\frac{x}{40}=\frac{y}{20}=\frac{z}{28}\)
\(\text{đặt:}\)\(\frac{x}{40}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow x=40k\)
\(\Rightarrow y=20k\)
\(\Rightarrow z=28k\)
\(\text{Theo đề ta có :}\)\(x.y.z=22400\Rightarrow40k.20k.28k=22400\)
\(\Rightarrow22400.k^3=22400\)
\(\Rightarrow k^3=1\)
\(\Rightarrow k=\pm1\)
\(\text{Với k=1 thì :}\)\(\hept{\begin{cases}x=40\\y=20\\z=28\end{cases}}\)
\(\text{Với k=-1 thì :}\)\(\hept{\begin{cases}x=-40\\y=-20\\z=-28\end{cases}}\)
Thiên tài thật: \(k^3=1\Rightarrow k=\pm1\)
Dẫn đến: \(\left(-40\right).\left(-20\right).\left(-28\right)=22400\)?????
Cho \(\frac{40}{x-30}=\frac{20}{y-50}=\frac{28}{z-21};xyz=22400\).tìm x,y,z
Tìm x, y, z biết :
a. 5x = 8y = 20z và x - y -z = 3
b. \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)Và -x + y + z = 120
c.\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)Và x X y X z = 20
d. x . y = -30 ; y . z = 42 và z - x = -12
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
[TEX]\frac{x}{2} = \frac{y}{3} <=> \frac{x}{8} = \frac{y}{12}[/TEX]
[TEX]\frac{y}{4} = \frac{z}{5} <=> \frac{y}{12} = \frac{z}{15}[/TEX]
Suy ra:
[TEX]\frac{x}{8} = \frac{y}{12} = \frac{z}{15} [/TEX]
Mặt khác: [TEX]x+y+z=10 [/TEX]
Áp dụng tính chấmơẻ rộng của dãy tỉ số bằng nhau:
[TEX]\frac{x+y+z}{8+12+15} = \frac{10}{35} = \frac{2}{7} [/TEX]
[TEX]x= \frac{16}{7}[/TEX]
[TEX]y= \frac{24}{7}[/TEX]
[TEX]z= \frac{30}{7}[/TEX]
Đây đâu phải toán lớp một mà là toán lớp 6 thì có