Cho 4 số nguyên dương a;b;c;d trong đó b bằng trung bình cộng của a và c ;1/c=1/2*(1/b+1/d)Chứng minh rằng 4 số trên lập thành 1 tỉ lệ thức
Cho tập A gồm 6 số nguyên, trong đó có 2 số nguyên dương và 4 số nguyên âm. Tập B gồm 4 số nguyên âm và 1 số nguyên dương. Lấy ngẫu nhiên 1 số của tập A và 1 số của tập B, sau đó lấy tích của 2 số đó. Hỏi có bao nhiêu trường hợp cho kết quả là một số nguyên ?
Cho a,b là 2 số nguyên dương thỏa mãn tổng,hiệu,tích,thương của chúng là 4 số nguyên dương khác nhau.Tìm GTNN của a + b
- Tích đúng hoặc sai vào các câu sau:
1.Tập hợp số nguyên bao gồm các số nguyên âm và các số nguyên dương
2.Tổng của hai số nguyên âm là một số nguyên dương
3.Tích của ba số nguyên âm và hai số nguyên dương là 1 số nguyên âm
4.Nếu a < thì /a/ = -a
5.Cho a thuộc N thì (-a) là số nguyên âm
6.Cho a,b thuộc Z,nếu /a/ = /b/ thì a=b
cho x, y là các số nguyên dương sao cho A= x4+ y4/15 là số nguyên dương. cmr x, y chia hết cho 3, 5. từ đó tìm giá trị nhỏ nhất của A
+) Vì y và x tỉ lệ thuận với nhau nên:
y=kx
\Rightarrow y_1=k\cdot x_1
hay 6=k\cdot3
\Rightarrow k=2
Vậy y tỉ lệ thuận với x theo hệ số tỉ lệ 2.
a) Tìm các số nguyên dương a sao cho a = 10 ; a = 1 ; a = 4 ; a = − 2
b) Tìm các số nguyên âm a sao cho a = 5 ; a = 1 ; a = − 4 ; a = − 3
c) Tìm các số nguyên a sao cho a = 5 ; a = 1 ; a = − 4 ; a = − 3
a) Cho 13 số nguyên dương trong đó tổng của 4 số bất kì là một số dương. Hỏi tổng của 13 số đó là âm hay dương ?
b) Cho 13 số nguyên trong đó tích của 3 số bất kì nào cũng là một số âm. Chứng minh rằng 13 số đó đều là số nguyên âm.
Trong tất cả các số đã cho có ít nhất 1 số nguyên dương vì nếu trái lại tất cả đều la số nguyên âm thì tổng của 13 số bất kì sẽ là số âm trái với giả thiết.
Tách riêng số dương đó còn lại 12 số chia làm 3 nhóm. Theo đầu bài, mỗi nhóm có tổng là 1 số dương nên tổng của 3 nhóm là 1 số nguyên dương.
cmr tồn tại vô số số nguyên dương a sao cho số z = n^4 +a không phải là số nguyên tố
1.Cho x,y là các số nguyên dương sao cho A=\(x^4+y^4\)cũng là số nguyên dương. CMR; x,y đều chia hết cho 3 và 5 . Từ đó tìm giá trị nhỏ nhất của A
Cho a là một số nguyên dương. Hỏi b là số nguyên dương hay nguyên âm nếu:
a) Tích a . b là một số nguyên dương ?
b) Tích a . b là một số nguyên âm ?
a) a là một số nguyên dương. Tích a . b là một số nguyên dương
Suy ra b là một số nguyên dương
b) a là một số nguyên dương. Tích a . b là một số nguyên âm
Suy ra b là một số nguyên âm
Cho x;y là các số nguyên dương sao cho : \(A=\frac{x^4+y^4}{15}\)cũng là số nguyên dương . Chứng minh x;y đều chia hết cho 3 và 5. từ đó tính giá trị nhỏ nhất của biểu thức A
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé