Cho 2 số hữu tỉ x và y với 0< x=a/b <1; y=a+c/b+c; c thuộc Z+ . Hãy so sánh x và y
Cho các số x và y có dạng: x = a 1 2 + b 1 và y = a 2 2 + b 2 , trong đó a 1 , a 2 , b 1 , b 2 là các số hữu tỉ. Chứng minh: x/y với y ≠ 0 cũng có dạng a 2 + b với a và b là các số hữu tỉ.
a)Tìm 3 số hữu tỉ x sao cho: x.(x-1/3)<0
b)Tìm 2 số hữu tỉ x và y (y # 0) sao cho: x+y=x.y=x:y
a/ x.(x-1/3)<0
mà x > x-1/3
=> x>0 ; x-1/3 < 0
=> x>0 ; x<1/3
=> 0<x<1/3, x thuộc Q
chọn ba số x là : 1/4 ; 1/5; 1/6
b/
x+y = x.y= x:y
x+y = x.y
=> x= x.y-y = y.[x-1]
=> x:y= x-1 [1]
=> x+y = x:y = x-1
=> y= -1 thay vào [1]
=> x: [-1] = x-1
=> -x = x-1
=> 2x = 1
=> x= 1/2
Vậy x= 1/2 ; y= -1
a)x(x-1/3)<0
Do x>x-1/3
=>x>0 x-1/3<0
<=>0<x<1/3
=>0<x<4/12
=>x={1/12;2/12;3/12;...}
Bạn bảo tìm 3 số nên mk tìm nấy chứ có vô số x
b)xy=x:y
=>y.y=x:x=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
<=>x-x=1
<=>0=1(L)
*)y=-1
=>x-1=-x
<=>x+x=1
<=>2x=1
<=>x=1/2
Vậy y=-1 x=1/2
a)Tìm 3 số hữu tỉ x sao cho: x.(x-1/3)<0
b)Tìm 2 số hữu tỉ x và y (y # 0) sao cho: x+y=x.y=x:y
a/ x.(x-1/3)<0
mà x > x-1/3
=> x>0 ; x-1/3 < 0
=> x>0 ; x<1/3
=> 0<x<1/3, x thuộc Q
chọn ba số x là : 1/4 ; 1/5; 1/6
b/
x+y = x.y= x:y
x+y = x.y
=> x= x.y-y = y.[x-1]
=> x:y= x-1 [1]
=> x+y = x:y = x-1
=> y= -1 thay vào [1]
=> x: [-1] = x-1
=> -x = x-1
=> 2x = 1
=> x= 1/2
Vậy x= 1/2 ; y= -1
Cho a và b là 2 số hữu tỉ khác 0. CMR tồn tại 2 số hữu tỉ x và y sao cho \(\left(a+b\sqrt{5}\right)\left(x+y\sqrt{5}\right)=b+a\sqrt{5}\)
Cho x, y là các số hữu tỉ khác 0 và x+y khác 0. Chứng minh rằng biểu thức:
A=1/x2 +1/y2 +1/(x+y)2 viết được dưới dạng bình phương của 1 số hữu tỉ.
Giúp mình với!
Cảm ơn nhiều nha!
x, y là số hữu tỉ khác 0
Đặt \(x=\frac{a}{b},y=\frac{c}{d}\)vs (a, b)=1, (c, d)=1 và a, b, c, d khác 0 và a, b, c, d nguyên, ad+bc khác 0 vì x+y khác 0
Xét
A=\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}=\)\(\frac{y^2+x^2}{\left(xy\right)^2}+\frac{1}{\left(x+y\right)^2}=\frac{\left(x^2+y^2\right)\left(x^2+y^2+2xy\right)+\left(xy\right)^2}{\left(xy\right)^2\left(x+y\right)^2}\)
\(=\frac{\left(x^2+y^2\right)^2+2\left(x^2+y^2\right)xy+\left(xy\right)^2}{\left[xy\left(x+y\right)\right]^2}=\frac{\left[\left(x^2+y^2\right)+xy\right]^2}{\left[xy\left(x+y\right)\right]^2}=\left[\frac{x^2+y^2+xy}{xy\left(x+y\right)}\right]^2\)
\(=\left(\frac{a^2d^2+b^2c^2+abcd}{ac\left(ad+bc\right)}\right)^2\)là bình phương của một số hữu tỉ
A) Cho các số hữu tỉ x= a/b; y = c/d; z= a+c/b+d với a,b,c,d \(\in\) Z và b>0, d>0 và x < y
Hãy chứng tỏ rằng x < z< y
B) Hãy viết ba số hữu tỉ khác tử số và khác mẫu số sao cho chúng lớn hơn -1/5 và nhỏ hơn -1/6
Giúp mình nha!
Em có cách giải này, nhờ mí anh chị hay bạn xem zùm e, có j sai sửa giúp e nha!
Do a/b < c/d và b>0 ; d>0 suy ra ad< bc ( 1)
Cộng thêm ad vào 2 vế của ( 1) ta được:
ad + ad < bc + ad
=> a( b+d) < b ( a+ c )
=> a/b < a+c/b+c ( 2)
Cộng thêm cd vào 2 vế của ( 2) ta được:
ad + cd < bc + cd
=> ( a+ c) b < ( b+ d ) c
=> a+c/b+d < c/d ( 3)
Từ ( 2) và ( 3) ta có: a/b < a+c/b+d < c/d hay x< z< y
b) Ta có:
-1/5 < -1/6 => -1/5 < -2/11 < -1/6
-1/5 < -2/11 => -1/5 < - 3/16 < -2/11
-1/5 < -3/16 => -1/5 < -4/21 < -3/16
-1/5 < -4/21 => -1/5 < -4/21 < -3/16
Vậy -1/5 < -4/21 < -3/16 < -2/11 < -1/6
Nhờ mấy ah cj xem zùm rùi cho em biết còn thiếu gì ko! Thanks nhìu ạ <3
Bài 1:Tìm số hữu tỉ a sao cho x<a<y, biết rằng:
a, x = 313,9543....; y = 314,1762.....
b, x = -35,2475....; y = -34,9628....
Bài 2: Chứng tỏ rằng:
a, 0,(37) + 0,(62) = 1
b, 0,(33) .3 =1
Bài 3: Tìm các số hữu tỉ a và b biết rằng hiệu a-b bằng thương a:b và bằng 2 lần tổng a+b
1.Tìm 2 số hữu tỉ x và y sao cho:
a) x + y = xy = x : y (y khác 0)
b) x - y = xy = x: y (y khác 0)
c) x + y = xy = x - y = x : y (y khác 0)
d) 2( x + y) = x - y = x : y (y khác 0)
2. Cho 100 số hữu tỉ, trong đó bất kỳ 3 số nào cũng có tích là một số âm.
a) CM: tích của 100 số đó là 1 số dương.
b) Kết luận cả 100 số đó đều là âm được ko?
3.Cho 2 số hữu tỉ có tổng bằng \(\frac{4}{33}\)và tích của chúng bằng \(\frac{-4}{11}\). Tính tổng các số nghịch đảo của 2 số đó.
4. Viết 1999 số hữu tỉ trên một đường tròn, trong đó tích hai số cạnh nhau luôn bằng \(\frac{1}{9}\). Tìm các số đó.