Biết \(\frac{a}{b}\)= \(\frac{c}{d}\). So sánh x và y biết x = \(\frac{5a+3b}{5a-3b}\); y = \(\frac{5c+3d}{5c-3d}\)
Ghi rõ cách giải nhé!
1.
a) Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) thì \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) (giả thiết các tỉ số đều bằng nhau)
b) Tìm x biết: \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)
Ai muốn gia nhập hội trai xinh gái đẹp thì k vào đây nha
a) \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
Đổi chỗ các trung tỉ cho nhau ta được: \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)\(\left(đpcm\right)\)
b)\(\Leftrightarrow\frac{x-1}{2004}+\frac{x-2}{2003}=\frac{x-3}{2002}+\frac{x-4}{2001}\)
Trừ cả 2 vế cho 2 . Đến đây thì dễ rồi.
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Leftrightarrow a=bk;c=dk\)
=> VT = \(\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)
VP = \(\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\)
Vậy VT = VP => ĐPCM
Bài 1: Tìm a, b, c biết:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và \(a-b+c=49\)
Bài 2: Tìm x, y, z biết:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x=2y+3z=14\)
Bài 3: Chứng minh rằng:
Nếu \(\frac{a}{b}=\frac{c}{d}\)thì
\(a,\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-5d}\)
\(b,\frac{7a+8b}{7a-8b}=\frac{7c+7d}{7c-7d}\)
1/ Ta có \(\frac{a}{2}=\frac{b}{3}\rightarrow\frac{a}{10}=\frac{b}{15}\) (1)
\(\frac{b}{5}=\frac{c}{4}\rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2) suy ra \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy TSBN
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{49}{7}=7\)
\(\Leftrightarrow\frac{a}{10}=7\rightarrow a=70\)
Tương tự với b và c
Vậy......
Bạn giải rõ ra hộ mình được không? Mình khôngg hiểu lắm ❤
ta có : \(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\){nhân cả 2 mẫu với 5} ok
lại có :\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\){nhân cả 2 mẫu với 3} ok
2 từ ok trên suy ra \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\){ vì có chung \(\frac{b}{15}\)
áp dụng tính chất tỉ lệ thức ta có
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)\(=\frac{a-b+c}{10-15+12}=\frac{49}{7}\)=7
vậy a= 10 .7 = 70
b=7.15 = 105
c= 12.7= 84
okkkkkkkkkkkkkkkkkkkkk
1 a) 2a=3b:5b=7c và 3a +5c-7b=30
b)\(\frac{x-1}{2}=\frac{x+3}{4}=\frac{z-5}{6}\)và 5z-3x-4y=50
c)3x=4y=6z và x-3y+2z=70
d)\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)và x+y+z=20
2 cho \(\frac{a}{b}=\frac{c}{d}\)và a;b;c;d\(\ne\)0
a)\(\frac{a}{a-b}\frac{c}{d}\)
b)\(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
c)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
d)\(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)
g)\(\frac{5a+3b}{5c+3b}=\frac{5a-3b}{5c-3d}\)
h)\(\frac{2a+3b}{2a-3d}=\frac{2c+3d}{2c-3d}\)
\(Cho\frac{a}{b}=\frac{c}{d}.Tính\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Ta có ; \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3b}=\frac{5a-3b}{5c-3b}\)
Nên : \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
Vậy \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-4d}\left(đpcm\right)\)
\(cho\frac{a}{b}=\frac{c}{d}CMR\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
dãy số bằng nhau ta có:
\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)
\(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)tính chất tỉ lệ thức
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Rightarrow\left(đcpm\right)\)
CMR :\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{5a+3b}{5a-3b}=\frac{2c+3d}{2c-3d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Xét VT \(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
Xét VP \(\frac{2c+3d}{2c-3d}=\frac{2dk+3d}{2dk-3d}=\frac{d\left(2k+3\right)}{d\left(2k-3\right)}=\frac{2k+3}{2k-3}\left(2\right)\)
Đề j đây
Bài 1: Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
Bài 2: Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)
a) \(\frac{5a+3b}{5a-3b}=\frac{5a+3b}{5a-3b}\)
b) \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
Cho \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\).CMR: \(\frac{a}{b}=\frac{c}{d}\)
Từ \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
<=> (5a+3b)(5c-3d) = (5c+3d)(5a-3b)
<=> 25ac - 15ad + 15bc - 9bd = 25ca - 15cb + 15da - 9db
<=> -15ad + 15bc = -15cb + 15da
<=> ad = bc
<=> \(\frac{a}{b}=\frac{c}{d}\)
CMR: Nếu \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\) thì \(\frac{a}{b}=\frac{c}{d}\)
Ta có
\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Rightarrow\left(5a+3b\right)\left(5c-3d\right)=\left(5c+3d\right)\left(5a-3b\right)\)
\(\Rightarrow25ac-15ad+15bc-9bd-25ac+15bc-15ad+9bd=0\)
\(\Rightarrow-30ad+30bc=0\)
\(\Rightarrow-30ad=-30bc\Rightarrow ad=bc\)
hay \(\frac{a}{b}=\frac{c}{d}\) ( ĐPCM)
\(\)
Ta có
5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)
⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0
⇒−30ad+30bc=0⇒−30ad+30bc=0
⇒−30ad=−30bc⇒ad=bc⇒−30ad=−30bc⇒ad=bc
hay ab=cdab=cd ( ĐPCM)
Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html