Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Anh Tú
Xem chi tiết
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
19 tháng 6 2020 lúc 12:44

\(\frac{3+x}{7+y}=\frac{3}{7};x+y=20\)

\(\Leftrightarrow21+7x=21+3y\Leftrightarrow7x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)

Áp dụng t/c dãy tỉ số ''='' nhau ta có 

\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{2}{10}=\frac{1}{5}\)

\(\Leftrightarrow\frac{x}{3}=\frac{1}{5}\Leftrightarrow5x=3\Leftrightarrow x=\frac{3}{5}\)

\(\Leftrightarrow\frac{y}{7}=\frac{1}{5}\Leftrightarrow5y=7\Leftrightarrow y=\frac{7}{5}\)

Khách vãng lai đã xóa
Sagittarius Nhan Ma
Xem chi tiết
Bùi Dương
21 tháng 2 2018 lúc 23:04

suy ra 7.(x+3)=3.(7+y) suy ra 7x+21=21+3y suy ra 7x=3y(vì 21=21) vì x+y=20 suy ra x=20-y suy ra 7.(20-y)=3y suy ra 140-7y=3y suy ra 140=3y+7y suy ra 140=10y suy ra y=140 :10=14 suy ra x=20-14=6 vậy x=6,y=14

Vũ Khánh Linh
Xem chi tiết
Chitanda Eru (Khối kiến...
18 tháng 9 2018 lúc 21:34

a) Từ \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)

Từ \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3\cdot9\\y=-3\cdot7\\z=-3\cdot3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)

b) Từ \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\) (1)

Từ \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{20}=\dfrac{z}{32}\) (2)

Từ (1) và (2) =>\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x+5y-2z}{14+100-64}=\dfrac{100}{50}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot7\\y=2\cdot20\\z=2\cdot32\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=40\\z=64\end{matrix}\right.\)

c) Đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)

=> \(x=12k\) ; \(y=9k\) ;\(z=5k\)

=> xyz = \(12k\cdot9k\cdot5k\) =\(540\cdot k^3\) = 20

=>\(k^3=20:540=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\)

=>\(k=\dfrac{1}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\cdot12\\y=\dfrac{1}{3}\cdot9\\z=\dfrac{1}{3}\cdot5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=\dfrac{5}{3}\end{matrix}\right.\)

d) Từ \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{25+49+9}=\dfrac{585}{83}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{585}{83}\cdot25\\y^2=\dfrac{585}{83}\cdot49\\z^2=\dfrac{585}{83}\cdot9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=\\y^2=\\z^2=\end{matrix}\right.\) đề bài sai nên ko tìm được x ; y ; z

phạm thị thu trang
Xem chi tiết
Minh cute
Xem chi tiết
Pham Cam Nhung
25 tháng 7 2017 lúc 11:28

y=14

x=6

TÍCH CHO MÌNH NHA BẠN

Phạm Thư
Xem chi tiết
Trần Long Tăng
Xem chi tiết
Đỗ Thị Linh Hương
Xem chi tiết
Nguyễn Thị Mai Huyền
Xem chi tiết
Diệu Huyền
12 tháng 2 2020 lúc 13:40

\(\left\{{}\begin{matrix}2\left(x+y\right)=5\left(x-y\right)\\\frac{20}{x+y}+\frac{20}{x-y}=7\end{matrix}\right.\left(1\right)\) \(Đkxđ:x\ne\pm y\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{5}{x+y}=\frac{2}{x-y}\\\frac{20}{x+y}+\frac{20}{x-y}=7\end{matrix}\right.\left(2\right)\)

Đặt: \(\left\{{}\begin{matrix}a=\frac{1}{x+y}\\b=\frac{1}{x-y}\end{matrix}\right.\) Ta có hệ pt \((2)\) trở thành:

\(\left\{{}\begin{matrix}5a=2b\\20a+20b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a-2b=0\\20a+20b=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20a-8b=0\\20a+20b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=2b\\28b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{10}\\b=\frac{1}{4}\end{matrix}\right.\)

Với: \(\left\{{}\begin{matrix}a=\frac{1}{10}\\b=\frac{1}{4}\end{matrix}\right.\) Ta lại có hệ pt sau: \(\left\{{}\begin{matrix}\frac{1}{x+y}=\frac{1}{10}\\\frac{1}{x-y}=\frac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=10\\x-y=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=14\\x+y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=3\end{matrix}\right.\left(tmđk\right)\)

Vậy ........

Khách vãng lai đã xóa
Nguyễn Tuệ Minh
Xem chi tiết
Phương Trình Hai Ẩn
2 tháng 10 2016 lúc 13:09

x/3=y/7 và x+y=20

=> \(\frac{x}{3}=\frac{y}{7}\Rightarrow\frac{x+y}{3+7}=\frac{20}{10}=2\)

\(\Rightarrow x=2.3=6\)

\(\Rightarrow y=2.7=14\)

Do not bother me
2 tháng 10 2016 lúc 13:11

\(\frac{x}{3}\)\(\frac{y}{7}\)\(\frac{x+y}{3+7}\)\(\frac{20}{10}\)\(2\)

Ta có: \(\frac{x}{3}\)= 2 => \(x\) = 6

\(\frac{y}{7}\)= 2 => \(y\)= 14

Trung Long Nguyễn
12 tháng 2 2018 lúc 10:34

mình vẫn chưa hiểu ý bạn là như tn