Cho f(x) là đa thức bậc 2 thỏa mãn f(0) = 0; f(1) = f(-1). CM f(-x) = f(x) với mọi x.
bài 1: Cho 2 đa thức P(x) và Q(x) thỏa mãn điều kiện: P(x)=Q(x)+ Q(1-x) vs mọi x thuộc R
Biết rằng các hệ số của đa thức P(x) là các số nguyên ko âm và P(0)=0. Tính P(P(3))
Bài 2: Cho đa thức f(x) là đa thứ bậc 4 có hệ số cao nhất là 1 thỏa mãn; f(1)=3;f(3)=11;f(5)=27
Tính f(-2) + 7*f(6)
Cho đa thức f(x) bậc bốn thỏa mãn 2 điều kiện sau: f(-1)=0 và f(x)-f(x-1)=x(x+1)(2x+1)
Cho đa thức f(x) có bậc 2 thỏa mãn: f(0) = 2010; f(1) - f(0) = 1; f(-1) - f(1) = 1.
a) Chứng minh rằng: f(2) = 2015.
b) Tìm số chính phương m để f(2m) - f(2) - f(0) = 5m2 - 3m - 1.
(biết "số chính phương là bình phương của một số nguyên")
a) Giả sử f(x)=ax2+bx+c
f(0)=0 <=> 0.a+0.b+c=2010 => c=2010
f(1)-f(0)=1 <=> f(1) =2011 <=> a+b+c=2011=> a+b=1(1)
f(-1)-f(1)=1 <=> f(-1)=2012<=> a-b+c=2012 => a-b=2(2)
Từ (1), (2), (3) => a=3/2,b=-1/2,c=2010
=> f(x)=3/2.x2-1/2.x+2010
=>f(2)=3/2.4-1/2.2+2010=2015 (đpcm)
b) f(2m)-f(2)-f(0)=5m2-3m-1
3/2.4m2-1/2.2m+2010-2015-2010=5m2-3m-1
<=>6m2-m-2015=5m2-3m-1
<=>m2+2m-2014=0
<=> \(\orbr{\begin{cases}m=-1+\sqrt{2015}\\m=-1-\sqrt{2015}\end{cases}}\)
=> Không có số chính phương m thỏa mãn
Mình góp ý chút nhé số chính phương là bình phương của một số tự nhiên nhé =))
1.Tìm f(x)=x3+ax2+bx+c biết x thuộc [-1;1] thì /f(x) /≤1/4
2.Cho đa thức bậc 2: f(x) =ax22+bx+c thỏa mãn điều kiện:/f(-1)/≤1;/f(0)/≤1;/f(1)/≤1
CMR:/2ax+b/≤4 với mọi x thỏa mãn/x/≤1
Cho đa thức f(x) là đa thức bậc 4 với hệ số cao nhất là 1 thỏa mãn f(1)=3; f(3)=11 và f(5)=27. Tính f(-2)+7f(6).
Đặt g(x)= p(x)- x^2 -2
Thay x =1 vào biểu thức trên ta có
g(1)= p(1)-3
Mà p(1)=3 => g(1)=0
thay x=3 vào biểu thức trên ta có
g(3)= p(3)- 3^2 -2
g(3)= 0
thay x=5 vào biểu thức trên ta có:
g(5)=0
=> x=1;x=3;x=5 là các nghiệm của g(x)
=> g(x)= (x-1)(x-3)(x-5)(x+a)
Mà p(x) = g(x)+x^2+2
=>p(x)= (x-1)(x-3)(x-5)(x+a)+ x^2 +2
=>p(-2)= (-2-1)(-2-3)(-2-5)(-2+a)+ (-2)^2 +2
=>p(-2)= 216-105a
7p(6)=896+105a
=> 7p(6)+ p(-2)= 1112
Cho đa thức f(x) thỏa mãn 2.f(x)-x.f(-x)=0 với mọi x thuộc R.Tính f(2)
Cho f(x) là đa thức hệ số nguyên thỏa mãn f(0)=2; f(1)=2. Chứng minh f(7) không thể là số chính phương
cho đa thức f(x) là 1 đa thức bậc 4 có hệ số lớn nhất =1 thỏa mãn f(1)=3 f(3)=11 f(5)=27
tính f(-2)+7f(6)
cho đa thức f(x) là 1 đa thức bậc 4 có hệ số lớn nhất =1 thỏa mãn f(1)=3; f(3)=11; f(5)=27. tính f(-2)+7f(6)